HDSLEE | HELMHOLTZ SCHOOL FOR DATA SCIENCE IN LIFE | EARTH | ENERGY

Coupling regional air quality simulations of EURAD-IM with street canyon observations - a machine learning approach

Charlotte Neubacher¹, Philipp Franke¹, Alexander Heinlein², Alex Klawonn³, Astrid Kiendler-Scharr¹, Anne Caroline Lange¹

¹ Forschungszentrum Jülich, Institute of Energy and Climate Research - Troposphere (IEK - 8), Jülich, Germany

² Delft University of Technology, Institute of Applied Mathematics, Delft, The Netherlands

³ Universität zu Köln, Institute for Mathematics, Köln, Germany

State of the Art Atmospheric Chemistry Transport Model

The EURAD-IM (EURopean Air pollution Dispersion-Inverse Model) is a state of the art atmospheric chemistry transport model on regional scales. It simulates physical and chemical processes in the atmosphere to predict the dispersion of air pollutants. With its 4D-var data assimilation application, detailed analyses of the air quality can be conducted. These allow for the improvement of initial atmospheric states as well as emission source strength assessments [2]. EURAD-IM simulations can be nested to a spatial resolution of $1 \times 1 \text{ km}^2$. However, this does not represent the inner city scale.

Integration of Informed ML Module towards a Hybrid Model

• Inner city scales of air quality and pollution (≤ 100 m) are mainly

ML Model Errors

- For unseen data sets: R²-score pprox 0.87, MAE pprox 1 ppb
- For ML model, R²-score and MAE are better than for baseline model
 → but performance of training data set is much better than
 performance of test and validation data set especially for MAE

- influenced by
 - heterogeneous anthropogenic emission sources (traffic, heating, etc.)
 - highly reactive atmospheric chemistry [1]
 - micro-meteorology
- Aim: Exploring street canyon observations with additional relevant environmental features (e.g. street architecture, traffic density or meteorology) by using informed machine learning (ML)
- Tool: Hybrid model: coupling ML module to EURAD-IM

Figure: Scheme of Hybrid Model: ML module is embedded in 4D-var data assimilation system of EURAD-IM.

Test Environment towards the Targeted Hybrid Model

- EURAD-IM forecast in 1 km and 3 km resolution (Rhine-Ruhr area)
 - Combine 3 km grid cell with nine overlaying 1 km cells
 - Predicting 3 km concentrations with central 1 km values as artificial observations

(a)
$$R^{2}(X, \hat{X}) = 1 - \frac{\sum_{i=1}^{n} (X_{i} - \hat{X}_{i})^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$
 (b) $MAE(X, \hat{X}) = \frac{1}{N} \sum_{i=1}^{N} |X_{i} - \hat{X}_{i}|$

Figure: Average error metric: a) R²-score, b) mean average error (MAE).

- Scatter plots show similar behavior for all subsets:
 - ML model prevents overprediction
 - weak performance above targeted concentration of 50 ppb
 - huge underprediction
 - \Rightarrow data point distribution: dense \leq 50 ppb, and sparse > 50 ppb

Figure: Scatter plots: predicted vs. targeted concentration, comparing ML model with baseline model for training, validation and test subset.

Baseline Model: artificial observation of 1 km concentration equal 3 km concentration

Conclusion

- Difficult data set: wide spread of values, not equally distributed \rightarrow high concentrations of particular interest
- Average errors suggest overfit regime \rightarrow no improvement through hyper parameter optimization
- \Rightarrow **Most relevant features** (found by feature importance analysis): NO, NO₂, O₃, CO, wind speed and street lengths

Outlook and Future Plans

- Transfer model from test environment to more complex street canyon observation
 - No labeled data
 - Detailed environmental parameters needed
- Acquire environmental parameters for observation sites
- GAN like structure to generate representative observed pollutant conc. of 1 km²
 - Based on test environment model as pre-trained generator

References

- [1] I Düring et al. "Update of the Romberg-approach and simplified NO/NO2 conversion model under consideration of direct NO2-emissions". In: 13th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes (Paris, France, June 1–4, 2010). 2010.
- [2] H Elbern et al. "Emission rate and chemical state estimation by 4-dimensional variational inversion". In: Atmospheric Chemistry and Physics Discussions (2007).

Member of the Helmholtz Association