

#### Anne Braakmann-Folgmann, Andrew Shepherd, David Hogg and Ella Redmond

# Motivation

- Iceberg calving accounts for ~50% of ice loss from Antarctica
- Iceberg melting affects the Antarctic environment (ocean properties, biological production, sea ice formation)
- $\rightarrow$  We need to know where icebergs melt how much
- Freshwater flux can be calculated from



### **Goal: Segment biggest iceberg in each image**

- Rough position is known
- $\rightarrow$  Inputs contain iceberg
- **Goal:** Segment this berg, discard other fragments





## **Data: Sentinel 1 images**

143 training images of 5 different icebergs for training and 24 images of 1 unseen iceberg for validation and testing each



**Bottleneck**: Deriving **iceberg** outlines manually Ground truth outlines derived manually







### **Method: U-net**

Input: Normalized backscatter (1 channel, 0-1)

<u>Output</u>: Iceberg/Background (1 channel, 0-1)

<u>Post-processing:</u> Thresholding the output, applying connected component analysis and selecting the largest component



#### Results

![](_page_0_Picture_29.jpeg)

U-net, Otsu and K-means are applied to input images in different conditions  $\bullet$ F1 Score (= dice) and median area deviation are calculated  $\bullet$ 

|              |         | Overall  |           | Validation data |           | Test data |           |
|--------------|---------|----------|-----------|-----------------|-----------|-----------|-----------|
|              |         | F1-score | Area dev. | F1 Score        | Area dev. | F1 Score  | Area dev. |
| Ocean        | U-net   | 0.97     | 2%        | 0.96            | 6%        | 0.97      | 2%        |
|              | Otsu    | 0.97     | 2%        | 0.98            | 1%        | 0.98      | 3%        |
|              | K-means | 0.96     | 3%        | 0.92            | 14%       | 0.98      | 5%        |
| Sea ice      | U-net   | 0.94     | 6%        | 0.91            | 6%        | 0.96      | 8%        |
|              | Otsu    | 0.72     | 4%        | 0.80            | 16%       | 0.98      | 3%        |
|              | K-means | 0.74     | 5%        | 0.81            | 21%       | 0.98      | 3%        |
| Fragments    | U-net   | 0.88     | 7%        | 0.93            | 4%        | 0.97      | 2%        |
|              | Otsu    | 0.91     | 7%        | 0.92            | 11%       | 0.98      | 4%        |
|              | K-means | 0.88     | 6%        | 0.75            | 21%       | 0.97      | 6%        |
| Bigger Bergs | U-net   | 0.45     | 11%       |                 |           | 0.33      | 10%       |
|              | Otsu    | 0.12     | 127%      |                 |           | 0.00      | 111%      |
|              | K-means | 0.19     | 11%       |                 |           | 0.09      | 13%       |
| Coast        | U-net   | 0.60     | 33%       | 0.92            | 12%       |           |           |
|              | Otsu    | 0.12     | 1189%     | 0.36            | 58%       |           |           |
|              | K-means | 0.11     | 1166%     | 0.00            | 30%       |           |           |
| Dark bergs   | U-net   | 0.20     | 87%       |                 |           | 0.03      | 258%      |
|              | Otsu    | 0.13     | 186%      |                 |           | 0.03      | 2690%     |
|              | K-means | 0.10     | 114%      |                 |           | 0.03      | 2391%     |

### **Conclusions**

- We present a novel approach using a deep neural network to segment giant icebergs in Sentinel 1 images
- **U-net outperforms state-of-the-art** approaches in **difficult conditions** (sea ice, berg fragments, nearby coast, ..)
- Dark icebergs, too much coast, other bergs of similar size and lots of nearby fragments remain a problem for all techniques

![](_page_0_Picture_36.jpeg)

![](_page_0_Picture_37.jpeg)

![](_page_0_Picture_38.jpeg)

![](_page_0_Picture_39.jpeg)