

NO₂ Forecast with Lightweight Machine Learning Models Based on POD Dimensionality Reduction Marco Stricker¹ Marlon Nuske¹ Dinesh Krishna Natarajan¹ Andreas Dengel^{1,2}

¹DFKI - German Research Center For Artificial Intelligence ²Technical University Of Kaiserslautern

Motivation

We investigate the potential of dimensionality reduction for improving the forecasting capabilities of recurrent neural networks and perform a thorough investigation of its performance for forecasting NO_2 concentrations. As one major air pollutant NO_2 can cause respiratory symptoms or even premature death. With the ability to forecast distribution of gases, precautions can be taken, such as issuing health warnings in the case of NO_2 . Traditionally, physical models are used to perform forecasts; they are, however, often computationally expensive. Complex deep learning models can be used as an alternative. They are, however, difficult to optimize and require a lot of training data, which is not always available.

To overcome these challenges, we reduce the dimensionality of the input data before training a neural network.

Our Pipeline

Figure 1. Problem: Predicting an output time series based on an input timeseries, where each timestep contains many 3D datapoints

Data

- NO₂ values from CAMS dataset
- One datapoint corresponds to one timestep
- Each datapoint has a Latitude, Longitude and Height
- We performed multiple experiments with different ways of scaling input data

Forecast Model

- Recurrent Neural Network (LSTM/GRU)
- Split Data into Train/Validation/Testing
- Input: 10 days, Output: 5 days

Benchmark Method: Same procedure without dimensionality reduction

Compression Evaluation

- Higher IC implies that more information is retained
- Lower RPE means that our reconstruction contains smaller mistakes
- Settings for best IC are not resulting in best RPE

We flatten our input data into a space x time matrix before feeding it to our network, as shown in Figure 2

ca. 3300 x n space-time matrix

Figure 2. Flattening the high dimensional input data into a space x time matrix

Dimensionality Reduction

- Data = Linear Combination of modes and coefficients
- Method: Proper Orthogonal Decomposition (POD)
- Spatial Modes are the same for all timesteps
- Temporal Coefficients are specific to each timestep
- Make predictions based only on coefficients

(c) Sample Visualizations

Figure 6. Evaluating the reconstruction of the input based on the reduced dimensionality. Shown are the results for different experimental settings.

 The experimental configurations include: removal of fluctuations, no scaling/standardization/normalization, calculating the scaling over the whole input or per space axis, scale height levels independently

Benchmark

Forecast Evaluation

(a) Forecast RPE Evaluation ag

Benchmark, best

	Mean RPE
	Min RPE
	Time for PC
	Time to Tra
0 5 10 15 20 25 30 35 40 45 50 POD Modes	Total Time
ainst benchmark	

Ground Truth

Ours (4 modes)

Figure 3. Transforming data into a representation of spatial modes and temporal coefficients. Selecting the most important modes achieves data compression

Figure 4. Example spatial modes with corresponding temporal coefficients.

(c) Sample Visualizations

Figure 7. Evaluating our forecast model against the benchmark

Conclusion

Due to the data compression we were able to train less complex networks, which require less training data and are easier to optimize compared to deep state-of-the-art models.

https://www.dfki.de

ECMWF-ESA Workshop on Machine Learning for Earth Observation and Prediction

marco.stricker@dfki.de