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Motivation
We investigate the potential of dimensionality reduction for improving the

forecasting capabilities of recurrent neural networks and perform a thor-

ough investigation of its performance for forecasting NO2 concentrations.

As one major air pollutant NO2 can cause respiratory symptoms or even

premature death. With the ability to forecast distribution of gases, precau-

tions can be taken, such as issuing health warnings in the case of NO2.

Traditionally, physical models are used to perform forecasts; they are, how-

ever, often computationally expensive. Complex deep learningmodels can

be used as an alternative. They are, however, difficult to optimize and re-

quire a lot of training data, which is not always available.

To overcome these challenges, we reduce the dimensionality of

the input data before training a neural network.

Figure 1. Problem: Predicting an output time series based on an input timeseries, where
each timestep contains many 3D datapoints
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Figure 2. Flattening the high dimensional input data
into a space x time matrix

Dimensionality Reduction
Data = Linear Combination of modes and coefficients

Method: Proper Orthogonal Decomposition (POD)

Spatial Modes are the same for all timesteps

Temporal Coefficients are specific to each timestep

Make predictions based only on coefficients

Figure 3. Transforming data into a representation of spatial modes and temporal
coefficients. Selecting the most important modes achieves data compression

Figure 4. Example spatial modes with corresponding temporal coefficients.

Our Pipeline

Figure 5. Our proposed pipeline.

Forecast Model
Recurrent Neural Network (LSTM/GRU)

Split Data into Train/Validation/Testing

Input: 10 days, Output: 5 days

Benchmark Method: Same procedure without dimensionality reduction

Compression Evaluation

(a) Information Content

(b) Relative Projection Error

(c) Sample Visualizations

Figure 6. Evaluating the reconstruction of the input based
on the reduced dimensionality. Shown are the results for
different experimental settings.
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Forecast Evaluation

(a) Forecast RPE Evaluation against benchmark (b) Tabular Evaluation

(c) Sample Visualizations

Figure 7. Evaluating our forecast model against the benchmark

Conclusion
Due to the data compression we were able to train less complex networks,

which require less training data and are easier to optimize compared to

deep state-of-the-art models.
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