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Motivation Our Pipeline

We investigate the potential of dimensionality reduction for improving the s B

forecasting capabilities of recurrent neural networks and perform a thor- — = 2R

ough investigation of its performance for forecasting NO, concentrations. . - : :

As one major air pollutant NO, can cause respiratory symptoms or even ey o 7 S

premature death. With the ability to forecast distribution of gases, precau- o I 1k

tions can be taken, such as issuing health warnings in the case of NO,. ——
Traditionally, physical models are used to perform forecasts; they are, how-

ever, often computationally expensive. Complex deep learning models can , .
be used as an alternative. They are, however, difficult to optimize and re- ?‘”?"’fz% o -

quire a lot of training data, which is not always available. » 1‘

To overcome these challenges, we reduce the dimensionality of o

the input data before training a neural network. ruture daia

Future coefficients

Figure 5. Our proposed pipeline.

Forecast

Forecast Model

= Recurrent Neural Network (LSTM/GRU)
= Split Data into Train/Validation/Testing
* Input: 10 days, Output: 5 days

Figure 1. Problem: Predicting an output time series based on an input timeseries, where  Benchmark Method: Same procedure without dimensionaﬁty reduction
each timestep contains many 3D datapoints
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(b) Relative Projection Error = The expenmental

* We flatten our input data
Into a space x time
matrix before feedmg It Figure 2. Flattening the high dimensional input data
to our network, as shown into a space x time matrix
In Figure 2
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Dimensionality Reduction
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Figure 6. Evaluating the reconstruction of the input based

 Data = Linear Combination of modes and coefficients .
 Method: Proper Orthogonal Decomposition (POD) Zf’ffte”;rffZ’i,ii‘l,,i’g’;i;’f’;’e’}?,’r’,gys5”°W” are the results for nglzpr?ecizr?txllz’vels
= Spatial Modes are the same for all timesteps independently
= Temporal Coefficients are specific to each timestep
* Make predictions based only on coefficients
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Figure 3. Transforming data into a representation of spatial modes and temporal L
coefficients. Selecting the most important modes achieves data compression (c) Sample Visualizations
Figure 7. Evaluating our forecast model against the benchmark
Mode =1 Mode =50
temporal coefficients temporal coefficients
Due to the data compression we were able to train less complex networks,
T which require less training data and are easier to optimize compared to
deep state-of-the-art models.
Figure 4. Example spatial modes with corresponding temporal coefficients. ‘@\Sga\
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