
Machine Learning: Model

Data

Motivation

Conclusions

Acknowledgments

Machine Learning Estimation of  Storm Updrafts
Randy J. Chase1,2,3, Kayla Hoffman4, Dan Stechman5, Cameron Hoymeyer2, Corey Potvin6, and Amy McGovern1,2,3

1School of  Computer Science, University of  Oklahoma, Norman, OK, USA; 2School of  Meteorology, University of  Oklahoma, Norman, OK, USA
3NSF AI Institute for Research on Trustworthy AI In Weather, Climate and Coastal Oceanography (AI2ES), Norman, OK, USA;

4Department of  Meteorology and Climate Science, San Jose State University, San Jose, CA, USA;
5 Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of  Oklahoma, Norman, OK, USA;

6National Severe Storms Laboratory, University of  Oklahoma, Norman, OK, USA;

Storm updrafts have been linked to tornado damage (i.e., larger updraft, more damaging 
tornado; Trapp et al. 2017, Marion et al. 2019, French and Kingman 2021) and hail 
formation (i.e., wider updraft, larger hail; Kumjian et al. 2021). Thus, there is potential in 
using updraft characteristics in real time to diagnose storm hazard potential. 

Physics methods of determining updraft (i.e., multi-doppler analysis) take too much time 
and quality-control. Furthermore, baselines (distances between radars) are often not 
conducive for high quality estimates of updrafts. Thus, physics-based methods are not 
available in real time for forecasting applications. 

This material is based upon work supported by the National Science Foundation under Grant No. ICER-2019758.  
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1. A machine learning model (U-net) was trained to translate radar reflectivity to maximum 
vertical velocity using NWP data

2. The U-net produces skillful estimates of updraft speed  (median errors < ± 50%)

3. The uncertainty information is well behaved (PIT diagram, pred in IQR ~ 50% of the 
time)

4. A case study on real radar data showed the U-net could be transferred from NWP to 
observations and look plausible

• A long-lived discrete supercell near Amarillo, Texas on 2019-04-30 persisted for more 
than 4 hours  

• Simulated IR shows hints of overshooting top and Above Anvil Cirrus Plume 

• HAILCAST (Adams-Selin and Zeigler 2016) suggests hail larger than 1” possible 

• WoFS updrafts exceed 30 m/s 

• ML output (median calculated from the distribution) suggests good correspondence 
with WoFS (truth)

Fig. 5: Pixel based evaluation of ML prediction (median of 
distribution) on validation set (2019). 

Fig. 8: U-Net3+ schematic (inspired by Huang et al. 2020) used for translating 3d radar data 
into maximum vertical velocity 

• The U-net updraft speeds look plausible, showing up near high reflectivity

• Updraft intensity increases (5 m/s) at the same time as the first severe hail 
report 

• Maximum Updraft intensity increases from 5 m/s at 20:00 to 20 m/s at 20:15 
(prior to tornado reports)

NSSL Warn-on-Forecast System (WoFS)

• 5-min temporal resolution
• 3 km horizontal grid spacing 
• 18-member forecast ensembles (different 

PBL and radiation schemes)
• Domain follows expected severe weather 

Training data: 2018; 19,000 training samples 

Validation data: 2019; 9,000 validation samples
Fig. 1: Example WoFS domain from 2019-04-30 

Data Generation: 
1. One map (size 128x128) of 3d radar reflectivity and maximum vertical velocity are 

sliced from every model initialization time, every forecast time and every model 
ensemble member. 

2. Only maps with at least 1 pixel > 10 m/s in the vertical velocity are kept for the training 
and validation dataset 

Fig. 2:  Graphic depicting the ML idea and data flow. (a) is 3 of the total of 29 vertical levels (0.5 km – 22 km) of radar 
reflectivity, units are dBZ and the colorbar is shown in Fig. 4. (b) the output label of the ML is the maximum vertical velocity 
in the column. The units are m/s and the colorbar is found in Fig. 4. 

Training Domain Validation

• Comparing each pixel to each other, 
qualitatively the ML has good 
correspondence with the label 

• 𝑅! values exceed 0.6 

Goal: 
Train a machine learning algorithm (i.e., U-Net) to estimate 

storm updrafts from measured radar reflectivity. 

Fig. 9: Case study from 2017-05-26 where the U-net is applied to observed 3d gridded radar data (GridRad Severe). 
Plotted is the composite reflectivity with the same colorscale as Fig. 4. Contours are the updraft speeds determined by 
the U-net with speeds of 5, 10, 15 and 20 m/s. (a) is at 20:00 UTC (b) is at 20:10 UTC and (c) is at 22:20
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Fig. 4: An example WoFS case from the validation dataset, 2019-04-30 in Texas. (a) Composite reflectivity (color shading) and 
HAILCAST 1” hail contour. (b) Outgoing longwave infrared radiation (c) WoFS maximum vertical velocity (color shading) and 
the 1” hail contour (d) Machine learning estimated maximum updraft speed (color shading) [this is the median of the predicted
distribution] and 1” hail contour. The video of this event can be watched using the QR code to the left. 
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Loss Function:
1. ML model outputs 4 parameters of 

Sinh-Arcsinh distribution (SHASH; 
Barnes et al. 2022)

2. Loss is neg-log likelihood , which 
optimizes the probability of the truth 
updraft

Fig. 3: (a) Schematic depicting how the ML predicts a 
distribution rather than a deterministic output. Inspired by 
Barnes et al. (2022). (b) example distributions before and 
after training
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Transfer Domain Example
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• The ML method used 
is a U-Net3+ (Huang 
et al. 2020), which 
has full-scale skip-
connections

• A hyperparameter 
search of more than 
100 models is done 
where many 
parameters are 
varied (e.g., depth, 
kernel size etc.)
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Fig. 6: Median Pixel based error (ML – Truth; solid line) as 
function of ML prediction (median of distribution) on validation 
set (2019). Shading is the 25th to 75th percentile of the error Fig. 7: Probability integral transform (PIT) diagram. Ideal 

scenario is a flat histogram with heights at 0.1 

• The ML prediction slightly 
underestimates for predicted updrafts 
between 5-10 m/s

• Overestimates predicted updrafts 
greater 25 m/s 

• The interquartile range probabilities are 
well calibrated (IQR fraction = 0.494)

• Weak probabilities are overestimated 

• Large probabilities are underestimated 
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