Hybrid data assimilation for model error ECNVF estimation and correction at ECMWF

Marcin Chrust⁽¹⁾, Alban Farchi⁽²⁾, Massimo Bonavita⁽¹⁾, Marc Bocquet⁽²⁾, and Patrick Laloyaux ⁽¹⁾

⁽¹⁾ ECMWF, Reading, United Kingdom; ⁽²⁾ CEREA, École des Ponts and EDF R&D, Île-De-France, France

Model error

- > Systematic errors are considered to be a limiting factor for the predictive skill of the ECMWF Earth System Model.
- \succ These errors have many origins. For example, the use of imperfect parameterisations of complex and not fully resolved physical processes, as shown in the figure below.

Diagnosing Model Error

 \succ Model error can be diagnosed using observations that are known to be unbiased, like radiosonde temperature or wind measurements, or of radio occultation from GPS satellites.

Hybrid Data Assimilation (DA)

- > We combined a physical model with a neural network based model correction (see Farchi et al., 2022) with the aim of accounting for systematic errors in DA.
- Input to the neural network (see Bonavita&Laloyaux, 2020) consists of climatological parameters (time of day/year, coordinates) and vertical columns of prognostic variables (T, LNSP, U, V).

$$\mathbf{x}_{k+1} = \mathcal{M}_{k+1:k}^{\mathsf{nn}}\left(\mathbf{p}, \mathbf{x}_{k}\right) = \mathcal{M}_{k+1:k}\left(\mathbf{x}_{k}\right) + \mathcal{F}\left(\mathbf{p}, \mathbf{x}_{k}\right)$$

where \mathcal{F} is a neural network correction added to $\mathcal{M}_{k+1:k}$, the resolvent of the physics based model from time t_k to t_{k+1} , and p are the parameters of the neural network model.

Training the Neural Network in the incremental 4D-Var framework

> Parameters of the neural network are optimized in the incremental 4D-Var cost function along with the atmospheric state:

$$\begin{split} \mathcal{J}^{\mathsf{nn}}\left(\mathbf{p},\mathbf{x}_{0}\right) &= \mathcal{J}^{\mathsf{nn}}\left(\mathbf{p}^{\mathsf{i}} + \delta\mathbf{p},\mathbf{x}_{0}^{\mathsf{i}} + \delta\mathbf{x}_{0}\right), \\ &= \frac{1}{2}\left\|\mathbf{x}_{0}^{\mathsf{i}} - \mathbf{x}_{0}^{\mathsf{b}} + \delta\mathbf{x}_{0}\right\|_{\mathbf{B}^{-1}}^{2} + \frac{1}{2}\left\|\mathbf{p}^{\mathsf{i}} - \mathbf{p}^{\mathsf{b}} + \delta\mathbf{p}\right\|_{\mathbf{P}^{-1}}^{2} \\ &\quad + \frac{1}{2}\sum_{k=0}^{L}\left\|\mathbf{y}_{k} - \mathcal{H}_{k} \circ \mathcal{M}_{k:0}^{\mathsf{nn}}\left(\mathbf{p}^{\mathsf{i}} + \delta\mathbf{p}, \mathbf{x}_{0}^{\mathsf{i}} + \delta\mathbf{x}_{0}\right)\right\|_{\mathbf{R}_{k}^{-1}}^{2}, \\ &\approx \frac{1}{2}\left\|\mathbf{x}_{0}^{\mathsf{i}} - \mathbf{x}_{0}^{\mathsf{b}} + \delta\mathbf{x}_{0}\right\|_{\mathbf{B}^{-1}}^{2} + \frac{1}{2}\left\|\mathbf{p}^{\mathsf{i}} - \mathbf{p}^{\mathsf{b}} + \delta\mathbf{p}\right\|_{\mathbf{P}^{-1}}^{2} \\ &\quad + \frac{1}{2}\sum_{k=0}^{L}\left\|\mathbf{d}_{k} - \mathbf{H}_{k}\mathbf{M}_{k:0}^{\mathsf{nn}}\left(\delta\mathbf{p}, \delta\mathbf{x}_{0}\right)^{\top}\right\|_{\mathbf{R}_{k}^{-1}}^{2}, \\ &\triangleq \widehat{\mathcal{J}}^{\mathsf{nn}}\left(\delta\mathbf{p}, \delta\mathbf{x}_{0}\right). \end{split}$$

Algorithm 1 Gradient of the incremental cost function $\widehat{\mathcal{J}}^{nn}$ eq. (16d).

Input: $\delta \mathbf{p}$ and $\delta \mathbf{x}_0$

- 1: $\delta \mathbf{w} \leftarrow \mathbf{F}^{\mathsf{p}} \delta \mathbf{p} + \mathbf{F}^{\mathsf{x}} \delta \mathbf{x}_0$ 2: $\mathbf{z}_0 \leftarrow \mathbf{R}_0^{-1} \left(\mathbf{H}_0 \delta \mathbf{x}_0 - \mathbf{d}_0 \right)$
- 3: for k = 1 to L 1 do
- $\delta \mathbf{x}_k \leftarrow \mathbf{M}_{k:k-1} \delta \mathbf{x}_{k-1} + \delta \mathbf{w}$
- $\mathbf{z}_k \leftarrow \mathbf{R}_k^{-1} \left(\mathbf{H}_k \delta \mathbf{x}_k \mathbf{d}_k \right)$ 5:

 \triangleright TL of the dynamical model $\mathcal{M}_{k:k-1}$

 \triangleright TL of the NN \mathcal{F}

Hybrid Data Assimilation performance

- > Joint estimation of the parameters of the neural network and atmospheric state allows for statistically significant reduction of first guess error fits to observations.
- Residual biases in observations can cause issues, similar as in weak constrain 4D-Var.


```
6: end for
   7: \delta \tilde{\mathbf{x}}_{L-1} \leftarrow \mathbf{0}
                                                                                                                                                                                                \triangleright AD variable for system state
                                                                                                                                                                                                   ▷ AD variable for model error
    8: \delta \tilde{\mathbf{w}}_{L-1} \leftarrow \mathbf{0}
    9: for k = L - 1 to 1 do
                     \delta 	ilde{\mathbf{x}}_k \leftarrow \mathbf{H}_k^\top \mathbf{z}_k + \delta 	ilde{\mathbf{x}}_k
 10:
                    \delta \tilde{\mathbf{w}}_{k-1} \leftarrow \delta \tilde{\mathbf{x}}_k + \delta \tilde{\mathbf{w}}_k
 11:
                   \delta \tilde{\mathbf{x}}_{k-1} \leftarrow \mathbf{M}_{k:k-1}^{\top} \delta \tilde{\mathbf{x}}_k
                                                                                                                                                                       \triangleright AD of the dynamical model \mathcal{M}_{k:k-1}
 12:
 13: end for
 14: \delta \tilde{\mathbf{x}}_0 \leftarrow \mathbf{H}_0^\top \mathbf{z}_0 + \delta \tilde{\mathbf{x}}_0
 15: \delta \tilde{\mathbf{x}}_0 \leftarrow [\mathbf{F}^{\mathsf{x}}]^{\top} \delta \tilde{\mathbf{x}}_0
                                                                                                                                                                                                                                      \triangleright AD of the NN \mathcal{F}
 16: \delta \tilde{\mathbf{p}} \leftarrow [\mathbf{F}^{\mathsf{p}}]^{\top} \delta \tilde{\mathbf{w}}_0
                                                                                                                                                                                                                                     \triangleright AD of the NN \mathcal{F}
17: \delta \tilde{\mathbf{x}}_0 \leftarrow \mathbf{B}^{-1} \left( \mathbf{x}_0^{\mathsf{i}} - \mathbf{x}_0^{\mathsf{b}} + \delta \mathbf{x}_0 \right) + \delta \tilde{\mathbf{x}}_0
18: \delta \tilde{\mathbf{p}} \leftarrow \mathbf{P}^{-1} \left( \mathbf{p}^{\mathsf{i}} - \mathbf{p}^{\mathsf{b}} + \delta \mathbf{p} \right) + \delta \tilde{\mathbf{p}}
Output: \nabla_{\delta \mathbf{p}} \widehat{\mathcal{J}}^{\mathsf{nn}} = \delta \widetilde{\mathbf{p}} \text{ and } \nabla_{\delta \mathbf{x}_0} \widehat{\mathcal{J}}^{\mathsf{nn}} = \delta \widetilde{\mathbf{x}}_0
```

FNN (Fortran Neural Network) library

 \succ Fortran implementation of sequential neural networks equipped with tangent linear and adjoint operators required by incremental 4D-Var: https://github.com/cerea-daml/fnn.

References

- Farchi, A., Chrust, M., Bocquet, M., Laloyaux P., Bonavita, M. (2022), Online model error correction with neural networks in incremental 4D-Var framework. arXiv preprint, arXiv:2210.13817.
- > Bonavita, M., & Laloyaux, P. (2020). Machine learning for model error inference and correction. Journal of Advances in Modeling Earth Systems, 12, e2020MS002232. https://doi.org/10.1029/2020MS002232.