
Model error
Ø Systematic errors are considered to be a limiting factor for the

predictive skill of the ECMWF Earth System Model.

Ø These errors have many origins. For example, the use of
imperfect parameterisations of complex and not fully resolved
physical processes, as shown in the figure below.
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Training the Neural Network in the 
incremental 4D-Var framework

Hybrid Data Assimilation performance

Diagnosing Model Error
Ø Model error can be diagnosed using observations that are known to be unbiased,

like radiosonde temperature or wind measurements, or of radio occultation from
GPS satellites.

Hybrid Data Assimilation (DA)
Ø We combined a physical model with a neural network based model correction 

(see Farchi et al., 2022) with the aim of accounting for systematic errors in DA.

Ø Input to the neural network (see Bonavita&Laloyaux, 2020) consists of 
climatological parameters (time of day/year, coordinates) and vertical columns 
of prognostic variables (T, LNSP, U, V).

Diffusion operator

Explicit convolution (BUMP)

where ℱ is a neural network correction added to ℳ!"#:!, the resolvent of the 
physics based model from time t! to t!"#, and p are the parameters of the 
neural network model. 

FNN (Fortran Neural Network) library
ØFortran implementation of sequential neural networks equipped with tangent linear and 

adjoint operators required by incremental 4D-Var: https://github.com/cerea-daml/fnn.

Ø Parameters of the neural network are optimized in the incremental 4D-
Var cost function along with the atmospheric state:

Ø Joint estimation of the parameters of the neural network and atmospheric 
state allows for statistically significant reduction of first guess error fits to 
observations.

Ø Residual biases in observations can cause issues, similar as in weak 
constrain 4D-Var.

Fig. Time series of the IFS temperature model bias (courtesy of Patrick Laloyaux).
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