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Motivation

Unresolved subgrid-scale processes make
data assimilation difficult.

Sea ice induces new issues for deep learning
methods by the marginal ice zone,
multifractality, and anisotropy.

Method should be scalable to arctic-wide
simulations with neXtSIM (Rampal et al., 2016).

Model setup
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Channel-like setup in a regional sea-ice

model (Dansereau et al. 2016, 2017, 2021) that
accounts for sea-ice dynamics only.

Examples of rapid transitions, by imposing a
wave-like wind forcing.

Twin experiments
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Training dataset with samples to correct
forecast errors with lead time of around
10 minutes.
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Training/Validation/Test samples

Conclusion

One deep neural network can parametrise
subgrid-scale processes for all prognostic
model variables at the same time.

Although only trained at first update,
network can be cycled with model
for continuous correction.

Next steps: Learn correction to NeXtSIM
Stochastic parametrisation

Deep learning can correct model errors from

the subgrid-scale for sea-ice dynamics

Cycling improves the short-term forecast

Persistence

Velocity
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The hybrid model represents the dynamics better
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Results in testing dataset
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Maximum likelihood with
Laplace distribution
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Median: Prediction by
neural network

Scale/uncertainty:
global per-variable

Efficient U-NeXt pipeline
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Influence of Cartesian resolution
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The manuscript will be submitted to
The Cryosphere soon
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