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Goals of the project

What is the research gap that we try to fill? * Develop new usages of geostationary sat data
* Cloud representation in NWP and climate * Exploit DL technigques to get new insight in mesoscale cloud organization:

models is critical -~ case study 1 over land: learn to identify cloud systems with different radiative properties through representation learning
* Unmet need to fully exploit high resolution - case study 2 over ocean: investigate the pseudo continuous (PC) order of cloud systems and exploit pseudo continuous
observations feature space to approach discrete space

* Analyze the identified patterns with respect to:
- large scale environmental conditions, physical processes, temporal variability, for renewable energy applications

Il. Second study: Over ocean

l. First study: Over land
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Row one and two, top two nearest and two farthest images when compared with the test | Features of the samples trained using the pseudo continuous approach are used as an

Image features in 128 x 128 configuration. Row 3 and 4 transfer learning the trained input in statistical approaches such as Elbow method and Silhouette method to get an
network over Juelich domain area for understanding the evolution of cloud systems idea what would be the optimal number of clusters for the given feature space
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classes. Triangles mark centroids for which corresponding images are shown.
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|. The neural network is able to separate cloud structures and distributions and analysis with both cases provides a
physical interpretation of the identified cloud systems.

l|. Test of the algorithm from a different year show same clusters, confirming the reliability of the methodology

IIl.The generalization capacity of the deep neural network with unseen data is promising but depends on the
spatial scale of cloud systems.
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