
Experiment 1: key results 
- LLE 3 well estimated, whereas LLE 1 and 2 are 

more challenging - especially LLE 2. 
- Lower  scores of Rössler system LLE 1 & 2 

predictions due to poor reproduction of extreme 
values (e.g. see Figure 4) and lagged or out of 
phase predictions in the fluctuations (Figure 3). 

- 6 time steps in input achieves marginally better 
results than 1 time step. 

- Largest prediction errors occur in regions of 
attractor where LLE values are locally 
heterogeneous, i.e. highly mixed (see Figure 5). 

Experiment 2: Lorenz 96, N=12. 
- Overall,  scores are lower (Figure 6). Best  

scores for LLEs 1 and 12 are 0.29 and 0.61, 
respectively. 

- Similar patterns with most negative, neutral and 
most positive LLEs: most negative LLE is best 
estimated. 

- Several ML algorithms tested: U-Net, ResNet-
style CNN, gradient-boosted ensemble of 
regression trees. 

- Found that converting to a classification problem 
(e.g. estimating number of positive LLEs) did not 
make the ML problem easier. 

- Challenge is illustrated using dimension 
reduction visualisation via t-SNE4, see Figure 7. 
Highly mixed regions pose a greater challenge. 

Future work 
- Ongoing work is investigating metrics to quantify 

the difficulty of the ML problem for a very local 
area of the system attractor.  

- Aim to make ML predictions with uncertainty 
quantification, enabling action to be taken on the 
basis of high-confidence predictions.
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Key questions and motivations 
1. Can we make improvements by adapting the modelling setup 

according to the state of the system? (Figure 1). 
2. Can we use ML to provide diagnostic information to drive adaptations? 
3. Local Lyapunov exponents (LLEs) measure dynamical instability over a 

finite time interval, i.e. how quickly nearby trajectories separate or get 
closer. They are too expensive to compute numerically during a 
forecast run. 

4. Thus, can we use ML to estimate the LLEs from the system state? We 
investigate this extensively in toy models.1

Supervised ML problem 
• Input: system states  or  
• Target: LLEs , computed via the 

classic method using tangent linear model and 
orthogonalisation.2,3 

Experiment 1: Set up 
- Two three-variable chaotic dynamical systems: 

Rössler and Lorenz 63 
- Four ML methods (see Table 1) 
- Separate bayesian hyperparameter optimisation 

of each system-algorithm-input  
- 30 trials, in each trial data is shuffled uniquely 

prior to splitting into train and test 
- Total data set of 100,000 examples: 60,000 

train, 20,000 validation, 20,000 test. 
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Figure 1: The non-intrusive paradigm for ML in NWP

Figure 2:  scores from trials in 
Rössler and L63 systems show the 
average accuracy on test data sets.
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Figure 6:  scores of 
predictions of Lorenz 96 model 

with , using gradient-
boosted regression trees.
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N = 12

Figure 3: Target and prediction time series for the Rössler 
system (top) and Lorenz 63 system (bottom), using best 

performing algorithm.
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ML algorithm Architecture

RT Regression Tree 1 tree per target LLE

MLP Multilayer perceptron 1+ dense hidden layers, dense 
output layer

CNN Convolutional neural network 1D-convolution layer, max pool, 
flatten, 1+ dense layers

LSTM Long short-term memory network 1+ LSTM layers, dense output layer

Table 1: ML algorithms used in Experiment 1

   Target values                Error locations

Figure 4: QQ plots show proximity of 
distributions of targets and predictions
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Figure 5: Target values (left) and negative contributions to  score for RT (middle) and CNN (right). 
In error plots, darker points have larger error.
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Figure 7: t-SNE-reduced inputs 
coloured by normalised LLE 1 
target values for Rössler (top), 

Lorenz 63 (middle) and Lorenz 96 
(bottom).

Equation 1:  score measures 
average accuracy of predictions  

of targets , with target mean .
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