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● In the context of climate change it is crucial to understand fire in the Earth System.
● Earth is one interconnected system (Figure 1). Large-scale processes have an effect on the 

global climate and fire seasons [1, 2].
● Deep Learning methods can help anticipate fire activity, e.g. deep learning for short-term 

wildfire forecasting at national scale [3].

SeasFire Cube

● Earth System Deep Learning: Move towards methods that can model the Earth as a system. 
Transformers and Graph Neural networks are promising to capture spatiotemporal interactions.

● Temporal dynamics of the fire drivers: Use time-series of the fire drivers instead of plain snapshots 
and borrow ideas from video forecasting.

● Explainability to identify the focus of the model and hint into known/unknown teleconnections.
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Figure 1: Visualization of a climate 
network with teleconnections [1].

● We define burnt area pattern forecasting as a segmentation task, using 8 input variables 
(Figures 3, 4) in time t to forecast the spatial pattern of burned areas on time t+h [5].

● The models demonstrate higher predictive skill than the mean seasonal cycle (Table 1). 
● In Figure 5, we see that the models’ predictions closely match the target burnt area, and capture 

major fire activity patterns.

Contributions
● We gather a global dataset with fire drivers and burnt areas 

(Figure 2) from 2001 to 2021 [4].
● Initial experiments, forecasting burned area as a segmentation 

task, show high predictive skill of Deep Learning models [5].
● We propose the use of Deep Learning methods that treat the 

Earth as an interconnected system to forecast burned areas and 
quantify teleconnections that impact fire.

Figure 5: Prediction (top row) and target (bottom row) maps for lead forecasting times of 8 (left), 32 (middle) and 64 (right) 
days. Predictions lower than 0.0001 are visualized as missing values. Input the same for all models, from 2019-09-14.

Figure 4: ML pipeline. The dataset is extracted from the datacube and fed to a UNET++ model that is trained with 
the Cross Entropy loss  with inputs valid at time t to predict the target on time t + h. 
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● An open-access datacube [4] for modeling global wildfires and their impacts.
● Global variables containing burnt areas, wildfire-related emissions, and fire drivers such as the 

meteorology, vegetation, land cover, population density and oceanic indices.
● At a common spatiotemporal grid 0.25° x 0.25 ° x 8-days, covering years 2001 to 2021. 

(will be made available at 1° x 1° spatial resolution as well)

Figure 3: Visualization of the input and target variables chosen for the experiments.

Table 1: AUPRC, F1-score for the UNET++ model forecasting with different lead times on the test dataset (year 
2019). Baseline values for weekly mean seasonal cycle also reported.
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Figure 2: SeasFire Cube description (top). Visualization of some variables (bottom), created by MPI-BGI DataVis Team.


