Flood Forecasting Everywhere

Guy Shalev, Google

Flooding impact

Numbers of people affected by weather-related disasters (1995-2015) (NB: deaths are excluded from the total affected.) Flood Drought Storm Extreme temperature TA Landslide & Wildfire million 56% 2% 94 millior 2.3 billion 26% 1.1 billion ^a Rodriguez-Llanes, J.M., Ranjan-Dash, S., Degomme, O., Mukho-padhyay, A., Guha-Sapir, D. (2011). "Child malnutrition and recurrent flooding in rural eastern India: a community-based

survey". BMJ Open 2001;1: e000109.

Google Public Alerts

G Search

Palu tsunami		×	4	
ALL VIDEOS NE	WS IMAGES	MAPS	SHOPPO	
SOS Alert			<	
Palu tsunami Central Sulawesi, Indo				
TOP STORIES				
Indonesia tsunami I	atest: Several f	eared dead	after	
O Evening Standard -	1 hour ago			
Sumarm nits Palu al D Evening Standard - BREAKING: Video si 7.7-magnitude quak The Jakarta Post - 3 h	hows tsunami te burs ago	hitting Palu	after	
Somerin mits Pallu al O Evening Standard - BREAKING: Video si 7.7-magnitude quak The Jakarta Post - 3 ho	ti hour ago hows tsunami se surs ago	hitting Palu i METRO	after	
O Evening Standard - O Evening Standard - BREAKING: Victor al Ar-Amagnitude quak The Jakarta Post - 3 hi	o	METRO	after	
O Evening Standard - O Evening Standard - BREAKING: Video si BREAKING: Video si DOBHING Ibe Jakarta Post - 3 h DOBHING DOBHING Tsunami hits Inde Palu after stong Palu after stong	onesia's	METRO Devastatir tsunami c coastal cit	after Ig mome rashes in ty in Indo	

→ Help local and public authorities communicate emergency messages

→ Provide useful context like emergency numbers, how to protect yourself, and maps of the situation

Flood Forecasting Initiative

Google's Flood Hub

g.co/floodhub

Google's Flood Hub

Google's Flood Hub

LSTMs & Conceptual Hydrologic Models

X_t

Hydrologic Model ML-based Approach

→ Almost no explicit modeling

 \rightarrow LSTM architecture for time series prediction

→ A single, shared LSTM to infer in all locations

Hydrologic Model - ML-based

<u>arxiv.org/abs/1907.08456</u> - Towards Learning Universal, Regional, and Local Hydrological Behaviors via Machine-Learning Applied to Large-Sample Datasets, Kratzert et al.

Prediction in Ungauged Basins

Intuition: if we train one model on 4000 or 4001 gauges, it doesn't really change the model specifically for that one ungauged basin

The main problem: gauges that are completely unrepresented in the dataset.

https://doi.org/10.5194/hess-2022-113 - Mai, J., et al. : The Great Lakes Runoff Intercomparison Project Phase 4: The Great Lakes (GRIP-GL) [in review, 2022]

Visual Comparison

<u>https://eartharxiv.org/repository/view/4586/</u> - In Defense of Metrics:Metrics Sufficiently Encode Typical Human Preferences Regarding Hydrological Model Performance

Visual Comparison - Results

Table 4. Win percentage and median validation period KGE from the GRIP-GL study bymodel for the different rating tasks.

			Median KGE			
	Rating task	Overall	High flow	Low flow	from GRIP-GL	
Regionally calibrated	mesh-class-raven	22	33	18	0.45	
	gem-hydro-watroute	23		35	0.46	
	mesh-svs-raven	32	32	50	0.57	
	swat-raven	33	32	35	0.56	
	watflood-raven	36	37	33	0.62	
Locally calibrated	lbrm-cc-lumped	49	53	42	0.75	
	hymod2-lumped	53	54	43	0.76	
	vic-raven	56	60	50	0.75	
	hmets-lumped	58	58	57	0.75	
	blended-raven	64	62	59	0.76	
	gr4j-lumped	67	64	69	0.74	
	blended-lumped	68	64	59	0.79	
ML	lstm-lumped	87	81	90	0.82	

<u>Bonus:</u> Metrics Are Sufficient

Global Model - Recent Results

Global Model - Recent Results

Global Model - Recent Results

Recent Results: Forecasting

→ Slow degradation of performance with longer lead-time

 \rightarrow More NWP products to be added

Missing Inputs - Masking & Union

Flood Forecasting Initiative

A Global Community Dataset For Hydrology

- Global open rainfall-runoff dataset with more than 7000 basins
 - Median streamflow record length: 34 years
- Forcings (ERA5-Land) and attributes (HydroATLAS) derived on Earth Engine
- The Vision: The community works to extend it together

*Dataset of preprint contains ~2500 basins but we already processed 6600 additional basins. Planned dataset extensions: CAMELS-FR, CAMELS-CH, CAMELS-DE and 300 basins from Denmark

Link to code/paper/dataset: <u>github.com/kratzert/caravan</u> Detailed guide for contributors: <u>github.com/kratzert/Caravan/wiki</u>

Advantages of ML for Global Hydrologic Modeling

Quality of predictions

- Fast and cheap training less than a day on a single GPU
 - Better science, fast research cycles
 - Easy to incorporate new data

A single model, applicable anywhere - no need for retraining

- Spatial precision of gauge location (compared to 10km pixel)
- Multiple input sources for better accuracy and uncertainty estimation

Talk plan

Floods intro, public alerts and new flood hub - 2 minutes

LSTMs vs. conceptual, better in gauged, ungauged and visual - 4 minute.

Global hydrologic model described + results 2 minutes

Missing data - Union (ERA5/ECMWF) and input masking 2 minutes

Caravan, a way to improve gauged locations and do better science 2 minutes

All the extra ways ML model is better. 2 minutes