
Loki v0.1.5: Freely Programmable Source-to-
Source Translation for IFS and beyond
Balthasar Reuter, Ahmad Nawab, Michael Staneker, Michael Lange
Ñ Research Department, ECMWF, Bonn (Germany) # {firstname}.{lastname}@ecmwf.int

Motivation

Perfomance portability of Numerical Weather Prediction (NWP)
codes across a broad range of HPC architectures, including
accelerators (such as GPUs), from a single code base
Static code analysis/linting of source code to aid development

Challenges

Different programming paradigms and environments
Hardware-specific optimisation (loop order, memory layout, ...)
Handling a large and complex Fortran code base
Compatibility with operational requirements and scientific changes

Methodology

Source-to-source (S2S) translation tool to inspect/transform code:
Static code analysis using internal representation
Build-time transformation of source code using bespoke recipes

Open development on Github
Source code & bug tracker

§/ecmwf-ifs/loki

Documentation

sites.ecmwf.int/docs/loki

Jupyter Notebook Tutorials

§/ecmwf-ifs/loki/tree/
main/example

Loki: overview and internal representation

Loki is a Python package to encode S2S translation recipes for Fortran

Core library: Internal representation (IR) and API to encode
custom transformations or analysis/linting pipelines

Fparser21 is used to generate parse tree of Fortran source
The parse tree is converted into Loki’s two-level IR, separating
(Fortran-tinted) control-flow from expression tree

Features:
Visitors are used to traverse and transform the IR
Scope-aware symbol tables manage type information
Scheduler builds a dependency graph for call trees across
source files and allows for inter-procedural analysis
Backends to generate Fortran (experimental: C, Python, or CUDA-Fortran)

Sourcefile
Module

Subroutine

Subroutine
...

Subroutine
spec body

Section

Conditional

condition body

Intrinsic

Loop

variable bounds body

Assignment

lhs

TMP

rhs

Product

A X

dimensions

I

Assignment

lhs

Y

dimensions

I

rhs

Sum

Y

dimensions

I

TMP

FindNodes(Assignment).visit(routine.body)

?

?

?

?

?

?

! !

SUBROUTINE AXPY (N, A, X, Y)

IMPLICIT NONE

INTEGER, INTENT(IN) :: N

REAL, INTENT(IN) :: A, X(:)

REAL, INTENT(INOUT) :: Y(:)

INTEGER :: I

REAL :: TMP

IF (A == 0.0) RETURN

DO I=1,N

TMP = A * X(I)

Y(I) = Y(I) + TMP

END DO

END SUBROUTINE AXPY

Bulk transformation and analysis of source code

Typical S2S translation recipes consist of
multiple bespoke transformation steps
User-defined pipeline of transformation
steps can be built using core library utilities
Scheduler applies transformations in the
order of the dependency graph
CMake integration automatically updates
dependencies of build system targets
Same infrastructure unlocks custom static
code analysis and experimental fixing of coding rule violations

CONTROL

LAYER_A

A

LAYER_B

B

glob(**/*.F90)

USER-DEFINED TRANSFORMATION SCRIPT

Parse
file tree

Transformations

A → B → C → ·· Write files

Frontends IR Visitors Transformation/Linter
utilities

... Backends

LO
K

I

USER-DEFINED LINTING RULES

Parse files/
file tree

Rules

1 2 3 4 ··
Fix Write files

Write report

CONTROL

LAYER_A

A

LAYER_B

B

Loki integration into standalone mini-apps extracted from IFS

CLOUDSC (cloud microphysics) serves as
a proxy for single-column algorithms to develop
transformation recipes for IFS physics

ecWAM is the operational IFS wave model,
consisting of dynamical core and physics

SCC: Single Column Coalesced GPU transformation

Swap horizontal/vertical loop, demote arrays
HOIST: pre-allocate temporaries in driver
STACK: pool-allocator for temporaries
Comparison: AMD EPYC 7742 vs. NVIDIA A100 40GB

§/ecmwf-ifs/
dwarf-p-cloudsc

§/ecmwf-ifs/ecwam

CPU
32 MPI x 4 OMP

OpenACC CUDA Fortran
0

100

200

300

400

500

Th
ro

ug
hp

ut
 ("

Ef
fe

ct
iv

e"
 G

F/
s)

19
8

39
7

17
4

34
7 41

2

31
9

(Higher is better)
CLOUDSC double precision

CPU
64 threads

OpenACC CUDA Fortran
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

W
al

l-t
im

e
sin

gl
e

pa
ss

 p
hy

sic
s (

s)

0.
67

0.
26

0.
36

0.
29

(Lower is better)
ecWAM O320 double precision

SCC SCC HOIST SCC STACK

Growing user base

Loki is used for the GPU adaptation of NWP
models at ECMWF, Météo-France, in the
ACCORD consortium, and as a key component
for the digital twins in Destination Earth. stories.ecmwf.int/

destination-earth

Outlook and Plans

Core library:
Add parallel processing support in the Scheduler
Expand data flow analysis to unlock advanced transformation steps
Fortran-to-C translation for kernel languages (CUDA, HIP, SYCL)

IFS transformation recipes:
Automate advanced transformation recipes (e.g., k-caching)
Expand offload support from OpenACC to OpenMP

Static code analysis:
Automatic checking and integration into PR review process

1. Science and Technology Facilities Council. fparser. https://github.com/stfc/fparser.

The work presented in this poster has been produced in the context of the European Union’s Destination
Earth Initiative and relates to tasks entrusted by the European Union to the European Centre for Medium-
Range Weather Forecasts implementing part of this Initiative with funding by the European Union.

https://github.com/ecmwf-ifs/loki
https://github.com/ecmwf-ifs/loki
https://sites.ecmwf.int/docs/loki/
https://sites.ecmwf.int/docs/loki
https://github.com/ecmwf-ifs/loki/tree/main/example
https://github.com/ecmwf-ifs/loki/tree/main/example
https://github.com/ecmwf-ifs/loki/tree/main/example
https://github.com/ecmwf-ifs/dwarf-p-cloudsc
https://github.com/ecmwf-ifs/dwarf-p-cloudsc
https://github.com/ecmwf-ifs/dwarf-p-cloudsc
https://github.com/ecmwf-ifs/ecwam
https://github.com/ecmwf-ifs/ecwam
https://stories.ecmwf.int/destination-earth/
https://stories.ecmwf.int/destination-earth
https://stories.ecmwf.int/destination-earth
https://github.com/stfc/fparser

	References

