
Introduction to CAMS Mini-Application
Iain Miller*, Olivier Marsden^ and Lucian Anton* – ECMWF, *Computing Department, ^Research Department

The Copernicus Atmosphere Monitoring Service, CAMS, is 
an integrated part of the IFS code, which is used to 
provide consistent and quality-controlled information 
related to air pollution and health, solar energy, 
greenhouse gases and climate forcing everywhere in the 
world.
Users then can use this information to implement 
mitigation measures in a timely manner.

What does the code do?
The bulk of the calculation is in a generated section 
that solves a stiff ODE system for each chemical 
species. For this it uses an implicit Rosenbrock ODE 
solver1,2 that is efficient for solving stiff systems like 
this.

Limitations
CAMS tracks a lot more chemical species and fields than a 
regular IFS forecast, which along with the usage of the 
additional solvers, means that runtimes when CAMS is 
used are 6-8 times that compared to not having it enabled.
Therefore, we want to be able to assess the cost of 
different configurations, solvers and methods in isolation 
from the IFS costs.

Developing the Mini-Application
The mini-app has been developed as a subset program of the IFS code. 
• The input and validation data is recorded during a standard CAMS-IFS forecast run, either side of the the first call to 
chem_main (the CAMS entry point).

• The mini-application then wraps the call to chem_main with the input data structures setup by the standard IFS 
setup routines and populated from the inputs.

• In this way we can keep any changes close to the current IFS code without being directly affected by them and then 
change the CAMS code in isolation and assess the impact of those changes.

• Also allows us to profile the CAMS code sections and find the hotspots without interference from any IFS routines.

Initial Findings
• Scaling is linear in terms of both MPI ranks and 

threads per rank.
• Unsurprisingly, the bulk of the time is spent in the 

Rosenbrock routines.
• Most expensive lines are in areas where the loop 

order is not conducive to contiguous memory 
access and effects vectorisation.

Current Progress
• Re-ordering loops and promoting subroutines and 

variables in highest cost loops.
• Removed extraneous Dr Hook timing statements.
• Fixed some memory leaks.

References and Acknowledgements
1 Valeriu Damian, Adrian Sandu, Mirela Damian, Florian Potra, Gregory R. Carmichael, The kinetic 
preprocessor KPP-a software environment for solving chemical kinetics, Computers & Chemical Engineering, 
Volume 26, Issue 11, 2002, Pages 1567-1579, ISSN 0098-1354, 
https://doi.org/10.1016/S0098-1354(02)00128-X

2 KineticPreProcessor, KPP, Github repository, https://github.com/KineticPreProcessor/KPP

The authors would like to acknowledge the help, time and 
support in this project from Johannes Flemming, Mihai 
Alexe, Vincent Huijnen, Zak Kipling and Ioan Hadade.

Earth Observation from 
satellite (>80 
instruments) and in-situ 
(regulatory and research)

CAMS main operational data assimilation 
and modelling systems

CAMS users
>22,500
(>2600 routine)

40km Globe (twice daily, d+5)

10km Europe
(daily, d+4)

From Presentation by Richard Engelen

0

5

10

15

20

25

30

35

1 2 4

Av
er

ag
e 

Lo
op

 ti
m

e 
(s

)

Threads per MPI Rank

Tl511 - 256 MPI Ranks - Thread Scaling

1 Step 10 Steps

0

10

20

30

40

50

60

70

128 256 512 640 768

Av
er

ag
e 

Lo
op

 ti
m

e 
(s

)

MPI Ranks

TL511 - Single Thread - MPI Scaling

1 Step 10 Steps


