
Summary
 CloudSC is unaffected by High Bandwidth Memory as it is heavily compute bound

 This can be determined with a very simple test and no advanced knowledge of the platform
 Effort should be put into optimising with vectorisation

 There are a lot of gains to be made with vectorisation
 Even with only a few lines changed
 Compiler auto-vectorisation can only vectorise what it’s given – not refactor entire algorithms

 Code bases written in “legacy languages” can still avail of cutting-edge language specific features 
without performance penalty
 Care must be taken for hidden differences between language specifications

 Source to source translation could be an ideal way to quickly increase performance while compilers 
achieve maturity

This project has received funding from the European High-Performance Computing
Joint Undertaking (JU) under grant agreement No 101033975. The JU receives support 
from the European Union's Horizon 2020 research and innovation programme and 
France, Germany, Italy, Greece, United Kingdom, Czech Republic, Croatia

 The IFS, and by extension CloudSC, is written 
almost entirely in Fortran
 Not feasible to translate the whole codebase
 SVE intrinsics are only available in C

 The solution is to identify hot sections of the 
codebase and hand write SVE kernels for these in 
C, which can be called from Fortran

 Conditional compilation allows for one generic 
codebase for seamless deployment

 In these simple examples it was possible to beat the 
auto-vectorised code

 Care must be taken though as Fortran aligned to 64 
bytes, while C aligned to 16 by default
 Only aligning to 64 bytes would give a 

performance increase over the baseline, while 
aligning to 16 bytes caused a significant 
slowdown

Porting and Benchmarking A Cloud Microphysics Parameterisation Scheme 
(CloudSC) To The A64FX Processor
Andrew Beggs1, Olivier Marsden1, Ioan Hadade1

(1) European Centre for Medium-Range Weather Forecasts (ECMWF); Andrew.Beggs@ecmwf.int, Olivier.Marsden@ecmwf.int, Ioan.Hadade@ecmwf.int

1. Introduction
Old is new again and vectorisation has become a key pathway to increase the performance of code. To feed this 
increase in compute performance, High Bandwidth Memory has also become increasingly popular. This poster 
looks at the effects and strategies to utilise both Arm’s Scalable Vector Extension (SVE) and HBM (available on 
Fujitsu’s A64FX processor) on CloudSC - a physics component of the Integrated Forecasting System (IFS) 
known for being computationally demanding. These results are to be used for readying applications for the EPI’s 
Rhea processor, while retaining maximum performance and minimum reliance on compiler auto-vectorisation.

2. Effects of vectorisation on performance
 Auto-vectorisation is able to increase performance by 87.6%

 A good result for only changing flags
 Refactoring the hottest loop yields an increase of 57.9% over base 

performance
 The change was minimal, <10 lines
 This is consistent with other refactorings

 A hand written SVE intrinsics kernel written in C and called from 
Fortran achieves 95.6% of performance of the auto-vectorised 
refactored loop
 Minimal optimisations used
 Potential for greater performance than the compiler

 This is only 5.87% of maximum theoretical FLOPS
 Gains will have diminishing returns going from hottest to coldest
 How much can be gained from vectorisation alone?

5. Work for the future

CloudSC on a Fujitsu A64FX vs ECMWF’s 
current operational AMD EPYC 7742

Roofline graph for the A64FX processor of 
CloudSC with various optimisations applied.
Theoretical bounds used

Performance of CloudSC without vectorisation, with auto-vectorisation, a 
handwritten SVE kernel, & auto-vectorised refactored kernel

Performance of various kernels against a Fortran (top) and C (bottom) auto-
vectorisation baseline

4. Impact of memory bandwidth on CloudSC
CloudSC is known to be compute intensive and often not bound by memory bandwidth. The following procedure provides empirical 
proof of this
 Performance is modelled with a naïve equation: T1 = T0α(f0/f1) + T0β(BW0/BW1) 

 T0 & T1: Are some performance metric from two separate runs

 α: Compute dependency (α = 1, purely compute bound)

 f0 & f1: The CPU frequencies used on the two runs

 Runs were taken varying only the CPU frequency

 α and β can be easily calculated with a linear regression, these were α = 0.651 & β = 0.343 for CloudSC

 Not memory bound at practical problem sizes

 β: Memory bandwidth dependency (β = 1, purely memory bound)

 BW0 & BW1: The memory bandwidths used on the two runs

 Better overall performance
 Currently CloudSC is only achieving ~6% of maximum theoretical 

FLOPS
 Use Loki to automate the process of writing SVE kernels

 A source to source translation tool
 Kernel performance can be automatically benchmarked against 

auto-vectorised code
 Highlights edge cases for human intervention and tool 

improvement
 Investigate more components of the Integrated Forecasting System

 CloudSC is only one of many components
 Each have their own performance characteristics and bounds

 Profile performance on the Rhea processor
 Does the code work as expected on the new platform (portability 

and performance)?
 We don’t know, the processor hasn’t been made yet!

3. Using C SVE intrinsics in Fortran


	Slide Number 1

