
1. Single-system bliss
You should test your code - for obvious reasons! If you only have to do it on your 
organisation’s HPC, you can usually rely on
• shared file systems
• common authentication procedures
• certain control over the used hardware.

Testing weather code on multiple HPC systems
Johannes Bulin1*

(1) ECMWF; (*) johannes.bulin@ecmwf.int

implemented by
Funded by
the European Union

2. SSH key handling
You want to automatically test your weather 
code on a different HPC system now? You may 
need
• the actual source code
• initial data
• some storage for the results.
All these components may be placed on 
different servers – and access usually works 
with SSH keys (unless you stay organisation-
internal!).

3. Result verification
When running integration tests, results must be verified of course. After model 
changes, a full scientific evaluation may be necessary. Subsequent technical changes 
can in most cases be verified by checking for bit-identicality.
Bit-identicality is usually only guaranteed when exactly the same configuration is used 
which means that
• the hardware
• the compiler 
• the compiler flags
• the parallel setup
must be the same (plus some additional requirements).

What should be done if you want to verify your results on a wide range of 
systems but don’t have a basement full of scientists to do a complete scientific 
evaluation for each system?

Now try to run it on a different HPC. You most likely
• need to login via SSH - using a designated SSH key
• can’t change the system configuration
• have different hardware/compilers/accelerators
• don’t have direct access to all your files.

Differences in the results should only stem from floating point inaccuracies. Everything 
else is most likely a bug! Therefore, we use a simplified version of the approach in ”An 
ensemble-based statistical methodology to detect differences in weather and climate 
model executables” (C. Zeman and C. Schär, Geoscientific Model Development, doi: 
10.5194/gmd-15-3183-2022):
1. Run a full (scientific) code validation on a system of your choice.
2. On this system, run an ensemble of simulations, by disturbing the initial data 

(magnitude similar to floating point accuracy).
3. Retrieve the results of each ensemble member.
4. For each result type, determine the expected range/confidence interval using the 

ensemble results.
5. Run simulation on another configuration. Check that it satisfies the ranges.

In this case, it would be great to
• stop the “diffusion” of SSH keys to different systems
• keep private service account SSH keys (CI keys) invisible to users
• make it easier to manage the different SSH keys.
The approaches that we’ve been using differ, depending on whether we can change 
the SSH configuration on the target HPC system or not.

Remote HPC (SSHD) can be configured Remote HPC (SSHD) can’t be configured

1. Enable certificate-based login on 
remote HPC.

2. Setup certification authority (for 
example Teleport or Hashicorp Vault).

3. Test runner creates temporary SSH 
keys, gets them signed by CA.

4. Login to target HPC with signed SSH 
keys.

1. SSH keys are stored in central vault 
(Hashicorp Vault).

2. Test runner uses token to obtain SSH 
keys.

3. Keys are added to SSH agent and 
are forwarded (no spread to other 
systems).

4. SSH keys are rotated frequently and 
are used for no other purpose.


