
Cloud microphysics dwarf extensions:
interfacing to Python and Loki GPU port of the

Nonlinear/Tangent Linear/Adjoint variants.
Zbigniew Piotrowski (zbigniew.piotrowski@ecmwf.int), ECMWF, Bonn, Germany

implemented by
Funded by
the European Union

Steps for connecting Python and Fortran code:

• Identify Fortran memory structures, ensure Python ownership of all non-temporary
data (Fortran arrays may be overwritten after leaving the Fortran subprogram).

• Remove dependence on the non-contiguous memory structures, eg. in derived types.
• Equip build process with Python virtual environment, providing the Python

dependencies.
• Generate Fortran wrappers using f90wrap.
• Generate Python-loadable .so library using f2py.

Caveats:

• Working in two (0- and 1-based) indexing regimes of Python and Fortran may easily
become an extra effort for the developers.

• f2py relies for the dynamical library packaging step on the numpy.distutils, which is
now deprecated. It is unclear what will serve as a replacement for this functionality in
the Fortran context.

• Performance of the Python-invoked Fortran code is inferior due to apparent lack of
control over the compiler optimizations in the f2py step.

Diagram exposing relation between IFS-spectral and IFS-FVM code stacks. The IFS physics Fortran
sources - following the usual build process - are processed further with the third party f90wrap/f2py tools to
produce Python module with a corresponding dynamically loaded library.

1. Introduction
Porting of the ECMWF operational software stack to modern accelerators is a key for
keeping the lead in the medium-range forecasting. Two most common porting
approaches focus either on code rewrites using modern hardware-agnostic
environments or enabling directive-based accelerator offloading directly or with the
use of automated tools. ECMWF undertakes both approaches, yet in different
contexts. The first approach is represented by the alternative IFS non-
hydrostatic finite-volume dynamical core FVM. FVM is implemented using the
Python library GT4Py for generating high-performance implementations of stencil
kernels for weather and climate modeling from a domain-specific language (DSL).
The second approach is being gradually employed to the Fortran spectral IFS
software stack, in particular employing Loki source-to-source translation tool.

2. Exploring Python-Fortran coupling for IFS-FVM
The process of the development and performance evaluation of the non-hydrostatic
dynamical core for global weather usually requires – if any – only fundamental
physics modules. However, further steps towards prospective operational use
require connecting to a complete set of physical parameterisations. DSL-oriented
rewrite of physics is expected to ultimately deliver an optimal performance,
however, it is time consuming and leads to tedious-to-maintain dual Python-Fortran
codebase. Seeking for an interim solution, a semi-automated solution offered by the
f2py/f90wrap was evaluated for the CLOUDSC cloud physics dwarf at ECMWF.

3. Is the GPU accurate enough for the tangent-
linear/adjoint computation ?
Using accelerator-based HPC hardware for the weather suite would be difficult
without the possibility of running state-of-the-art data assimilation. However,
experimental evidence shows that fine numerical details of the realization of
computations may impair physical models that rely on satisfying the algebraical
identity AA-1=1. To investigate if the CLOUDSC2 NL/TL/AD dwarf triad computes
properly on GPU, the TL and AD variants were ported to NVIDIA GPUs using Loki
source-to-source translation tool (--> see the poster of Reuter et al.). The
implementation effort was straightforward and required only a mild adaptation of the
LOKI software stack.

For the tangent linear model, error norm for CPU and GPU variants are nearly
identical, regardless of the NPROMA (i.e. blocking parameter) choice. In turn, the
adjoint model test reveals that the GPU-specific maximum error (in terms of zero of
the machine) is about 71% of the corresponding value on CPU.CLOUDSC: driver

fileA

fileB

fileC

IFS

Other physics

CMake

usual compilation

f90wrap

f2py

FVM

GT4Py

Python to CLOUDSC call

Python to other physics call

GT4Py

Cloud
water/ice

Water
vapour

Autoconversion

Condensation
Evaporation

Cloud
fraction Evaporation

Surface Precipitation

a Previous cloud scheme b New cloud scheme

Precipitation
rain/snow

Cloud
ice

Snow

Cloud
water

Rain

Water
vapour

Surface Precipitation

Freezing – Melting

Autoconversion
Collection

Autoconversion
Collection

Freezing – Melting – Bergeron

Deposition
Sublimation

Condensation
Evaporation

Ev
ap

or
at

io
n Sublim

ationCloud
fraction

For the investigation of the code development
and modernization ideas, ECMWF relies in
part on the mini-benchmark applications
called dwarfs, consisting of simplified,
extracted IFS components that are
nevertheless at least in part representative for
the IFS software stack. A notable example of
such dwarf is the CLOUDSC/CLOUDSC2
dwarf embedding IFS cloud microphysics
scheme, where CLOUDSC2 is further
simplified version of CLOUDSC to facilitate a
wider range of experimentation, including
tangent linear (TL) and adjoint (AD) versions.

CLOUDSC dwarf physical process scheme
Error norm for CPU and GPU: SCC and SCC-HOIST TL variants.

Maximum error of the AD test for the CPU and GPU: SCC and SCC-HOIST variants.

4. Conclusions
• Task of merging Python and Fortran codes is non-trivial and within the

f90wrap/f2py-based solution requires further investments. Alternatives, e.g.
source-to-source processing or temporary dual codebase should still be
considered.

• CLOUDSC2 NL/TL/AD testbed can be computed accurately using the
OpenACC GPU port provided by Loki. This suggests that such route to
port components of IFS data assimilation is open. Due to the code complexity, a
separate and careful insight into the computational performance will be
necessary.

The work presented in this poster has been produced in the context of the
European Union’s Destination Earth Initiative and relates to tasks entrusted by the
European Union to the European Centre for Medium-Range Weather Forecasts
implementing part of this Initiative with funding by the European Union.

Current computational performance, based on the raw (i.e. unoptimized) TL/AD
port, varies on the level of code complication at hand. The AD model, which is the
most complex, demands optimization effort, as the 64 CPU threads (run on the 2x
EPYC 7742 node) offer significantly more performance. In turn, the TL model with a
proper NPROMA choice may easily offer double the CPU performance.

