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Conclusions

The main objective of this study was to learn the 3D
cloud radiative effects with Machine Learning. Our
results extend the work of Meyer et al. (2022).
Using more relevant datasets, we trained 3 different
neural network architectures:
• 1D CNN (custom network with dilation rates to

propagate the information in the atmospheric
column),

• 1D Unet (widely used architecture) and
• RNN (to mimic the formulation of Tripleclouds).
Following Ukkonen (2022) and Chantry (2022) but for
this correction task. RNN were found to be excellent
candidates to capture the 3D cloud radiative
effects. These results tend to confirm the
dependance of ML model architectures to the
physical processes they try to emulate.

We also implemented two coupling strategies to
integrate the ML models into ecRad. We manage to
correct Tripleclouds in ecRad and even in RAPS.
A first step has been done but both strategies need
to be improved to achieve performance and
scalability.

Highlights
❖ 3D radiative cloud effects are well captured by deep learning

models, especially the RNN
❖ All atmospheric columns are considered : with and without

clouds (increasing the task complexity)
❖ Trainings were carried out on a heterogeneous cluster in multi-

node, with Milan CPUs and Nvidia A100 GPUs
❖ Comparison of different model architectures (CNN-1D, Unet-1D

and RNN)
❖ Two coupling strategies have been implemented
❖ Coupling strategies still need to be improved by adding

distributed inference to enable scaling on GPUs

2. Bias correction with Deep Learning

Dataset
The dataset is generated by ECMWF for the MAELSTROM project. The
IFS model is run every 30 days for 30 days and saving inputs/outputs
every 25 hours. The forecasts were generated on a 40-km grid (TL511)
resulting in 271,360 atmospheric columns every timestep.
Three datasets are available for training and validation the full 2020 year
and 4 forecasts in 2019, respectively.
For our trainings, we used a subset of this dataset (28,221,440 columns
for training, 203,520 for validation and 814,080 for testing).

Model Architecture
Model input data are the same as Tripleclouds.
The model returns the correction to be applied to the shortwave flux, the
longwave flux, and their heating rates.

For this use-case we tested three model architectures (all with attention
mechanisms):
• CNN-1D using different dilation rates to propagate information
• Unet-1D with padding to keep the vertical structure
• RNN (x2) following Ukkonen (2022) and Chantry (2022)

Training
Trainings were performed using TensorFlow and Horovod.
Between 20 and 40 A100 GPUs were used per training, on a dataset of
~500GB.
We chose to predict the corrective terms for the shortwave and longwave
fluxes in addition to the heating rates using a custom layer (the heating rate
is the vertical divergence of the net flux).
This is translated in a combined loss: ℒ = 𝛼 ℒ𝑓𝑙𝑢𝑥 + 𝛽 ℒ𝐻𝑅
where 𝛼 and 𝛽 are used to correct the imbalance between the ℒ𝑓𝑙𝑢𝑥 and ℒ𝐻𝑅 .
Clear-sky and cloudy scenes are used in training so are the Earth dark

side scenes for the shortwave flux.

Offline evaluation

Vertical profiles of bias and MAE with 5-95 and 25-75 percentiles (blue areas)
➢ RNN very good to correct both fluxes and heating rates
➢ CNN and Unet better to correct the longwave flux
➢ High errors at the top of the atmosphere for heating rates (pressure differences are

small)

Mean Absolute Percentage Error
➢ Bulk errors are relatively small

for fluxes
➢ MAPE < 7 % mean that the neural

networks capture more than 93 %
of the 3D radiative cloud effects

➢ RNN very good to correct both
fluxes and heating rates

➢ CNN and Unet better to correct
the longwave flux and especially
heating rates

%
SW Net 

Flux

SW 
Heating

Rate

CNN 8.23 51.26

Unet 6.81 67.36

RNN 2.43 18.50

%
LW Net 

Flux

LW 
Heating

Rate

CNN 3.61 18.44

U-Net 4.58 26.22

RNN 2.51 23.81

2D histograms between predictions and ground truth
➢ The error is well captured for flux by all the models, especially by the RNN
➢ Heating rates are more scattered
➢ High errors around zero for heating rates (pressure differences are small)
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1. Radiative schemes in ecRad

ecRad (Hogan and Bozzo, 2016) is a library used in IFS to compute vertical profiles of solar (shortwave) and near-
infrared (longwave) fluxes and heating rates.
The radiative scheme is simulated through 5 different solvers. In this use case we will focus on Tripleclouds and
Spartacus. Spartacus is an extension of Tripleclouds, representing the 3D cloud radiative effects but it is
computationally more intensive.
The aim of this project is to improve the accuracy of Tripleclouds by training a neural network to emulate the
3D cloud radiative effects, based on the difference of the outputs between Tripleclouds and Spartacus.

𝑺𝑷𝑨𝑹𝑻𝑨𝑪𝑼𝑺 = 𝑻𝒓𝒊𝒑𝒍𝒆𝒄𝒍𝒐𝒖𝒅𝒔 + 𝝐

where 𝜺 is the 3D cloud radiative effects and will be learnt by a neural network.
This development in ecRad is intended to be reintegrated into RAPS20 (IFS-like model).
The present work pursues Meyer et al.’s first attempt to correct Tripleclouds fluxes using SPARTACUS.

Tripleclouds

Spartacus

3. Coupling ecRad with ML models

2.1 Loose coupling
This coupling is inspired by the client-server protocol, the MPI
process in charge of the inference considered as the server
and processes in charge of performing the solver calculation
considered as clients. An effort has been made to transmit
data using MPI RMA, enabling communication between the
solver and the inferer.

• Solver and inference are calculated asynchronously by
different MPI processes

• Two synchronization points are required : one before
starting inference, and another before adding the bias
correction to Tripleclouds

• Works on heterogeneous architectures (CPU-GPU)

Improvements :
• Add the distributed inference on multi-GPU and multi-

node
• Handle multi-threads with openMP
• Improve the pre/post-processing of the data between the

inferer and the solver

2.2 Tight coupling
The inference is performed directly in the radiation_scheme
function by each openMP thread. An interface has been
designed to switch from Fortran to C++, and to C++ to Python
and vice versa.

• No additional communication time
• The inferer batch size depends on NRPROMA, which

represents several atmospheric columns determined by
the optimal parameters of the openMP loop in ecRad.

• Only works on CPU for the moment
• Philosophy similar to ECMWF coupling library Infero

Improvements :
• Add a GPU version
• Reduce the loading time of the ML model
• Increase the batch size for the inferer
• Simplify coupling and distribute inference by using an API

like NVIDIA’s TorchFort which can directly load PyTorch
models in Fortran codes

To apply a correction to Tripleclouds considering the 3D cloud radiative effects, we need to establish communication between
ecRad’s radiation_scheme function written in Fortran and the AI inferer running in Python. This function is in a parallelized OpenMP loop.
Two strategies were considered to solve this problem are loose coupling and tight coupling, both are still under development to
improve scalability.
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