
Ubiquity: An Open-Source Platform For Ubiquitous Large-Scale Computing

Chris Coates, Head of Engineering, HPC&AI - Logicalis UKI

There are significant challenges that exist in the widespread 
adoption of Large-Scale Computing, many of which revolve 
around an increased complexity reducing the effectiveness of 
staffing.

Because of this need, Logicalis has developed in collaboration 
with various organisations a solution called Ubiquity.

Ubiquity provides a rapidly growing open-source and open-
development platform designed for Large-Scale Computing, 
which leverages the concepts of Cloud Computing, Converged 
Computing, and Ubiquitous Computing.

This platform utilises container and container orchestration 
technologies to enable efficient and scalable solutions. 

The results of this project have been impressive, and as a result 
Ubiquity has garnered an increasing level of adoption and has 
extended its support to diverse HPC infrastructures beyond the 
field of scientific research.

Industries such as financial services, energy, manufacturing, and 
life sciences have found value in leveraging Ubiquity to enhance 
their computational capabilities.

Abstract
Logicalis and their investment into the future of Large-Scale 
Computing has developed the concept of applying Ubiquitous 
Computing Concepts towards HPC and AI environments.

As such, the performance and usability improvements alongside 
significant security improvements and reduced overhead to both 
implement and maintain make a Ubiquity platform significantly 
more scalable – A key concern as we move into the exascale era.

The results we achieved during the continual ongoing 
development of this project will continue to evolve and improve 
over time.

Ubiquity as a stack will be formally released before SC23 – Under 
a free open-source license (Apache 2.0).

Logicalis welcomes collaboration with organisations to help 
usher in a new era of collaborative design and technology 
improvement to unlock the transformation of what is apparently 
possible.

Conclusion

Going forward, this project has on its roadmap already:

• Multi-cloud refinement – Because of the ability to deploy the 
same underlying core K8s environment, the remainder of the 
infrastructure can be consistent. Axure and AWS are already 
onboarded, GCP is underway alongside OCI and OVH.

• Make the physical part of deploying a cluster simpler –
Augmented Reality project already underway

• Leverage AI to provide root-cause analysis of system 
functionality/performance issues – By ingesting system logs 
and creating agents to do investigation and fixes and 
continually learn via reinforcement, the system should 
become more efficient at maintaining and fixing itself the 
longer it is in-service.

• Continue to refine and improve automation pipelines to ensure 
updates are continual.

• Continue to integrate storage providers into Ubiquity.

Recommendations/Roadmap

Despite the immense potential and opportunities presented by 
Large-Scale Computing in accelerating business innovation and 
scientific research, several challenges exist that hinder its 
widespread adoption and optimisation.

At the heart of this lies a widespread lack of awareness and 
specialised expertise necessary to operate and leverage HPC and 
AI systems efficiently. This gap is further exacerbated in the 
academia, where the roles of software developer and researcher 
often converge, leading to sub-optimal software development 
practices, poor testing procedures, and inadequate software 
packaging/archiving protocols.

There exists a crucial need for an HPC solution that can address 
these multidimensional challenges, providing an accessible, 
efficient, and sustainable platform for users to harness the power 
of large-scale computing across hybrid environments.

Logicalis has invested in the future of these environments and is 
giving back to the HPC community at-large by developing a 
solution to this in the form of a software stack/framework called 
Ubiquity.

Ubiquity is a powerful, autonomous platform designed to 
accelerate and simplify the deployment and management of HPC 
resources. It is designed around the concept of Ubiquitous 
Computing, which aims to make the complex, easier to use and 
administrate.

The Ubiquity project delivers a stack that is fully open-source 
and platform-independent, enabling rapid deployment of 
containerised HPC environments across both on-premises and 
cloud environments.

Introduction

Ubiquitous Computing, was coined by Marc Weiser of Xerox 
PARC in 1991:

“My colleagues and I at PARC believe that what we call 
ubiquitous computing will gradually emerge as the dominant 
mode of computer access over the next twenty years. 
Like the personal computer, ubiquitous computing will enable 
nothing fundamentally new, but by making everything faster 
and easier to do, with less strain and mental gymnastics, it will 
transform what is apparently possible.”

This concept applied to Large-Scale Computing means:

• Reduced overhead to use day-one
• Reduce deployment time (90%+ required)
• Enable mobility of research
• Be secure by-default without impeding users
• Significantly reduce overheads to administrate day-to-day
• Improve coding workflows
• Improve observability of performance
• Reduce touchpoints to make infrastructure changes

To achieve this, we have leveraged specific components – But 
the ultimate goal is to be autonomous wherever possible

Components/Requirements

To deliver this functionality, we have referred to our deployment 
in the concept of “layers” – Key components layered, that enable 
other layers above to be more effective. 

Methodology

Our results speak for themselves:

• Deployed entire environment for key science research 
outcomes within 10 days end-to-end.

• Achieved a 46% performance uplift vs. higher-specified 
hardware, independently benchmarked on a hardware 
vendors own software stack.

• Environment shutdown/startup time now reduced to <30 
minutes with zero intervention.

• Automated code analysis via Ubiquity workflows delivers a 
significant performance uplift:

• Self-serve functionality allows entire learning environments 
to be spun-up within minutes from a catalog of software, all 
controlled via GitOps

• Leveraging eBPF to monitor syscalls of software alongside full 
network segmentation enables security posture to be 
maintained whilst users are unimpeded by such technology. 
The performance hit of this is less than 0.5%.

• This same functionality also allows for live performance 
profiling of software, with minimal overhead on the software 
itself.

Results

EL8/9/Ubuntu 22.04 at OS-
layer.
- Best hardware support 

possible
- Best performance of an 

enterprise OS
- Delivered using IaC

OpenStack as a service inside Kubernetes 
(on-prem).
- Enables baremetal deployment 
- Enables high-availability out-of-the-box
- Enables integration using service mesh
- Enables upgrades in-situ with no 

downtime
- Delivered using IaC with CI/CD

Enterprise-grade monitoring
- Can do performance tracing too
- Enables security tools to operate well
- Delivered using IaC with CI/CD

Kubernetes the layer above.
- Enterprise-grade orchestration
- High-availability services out-

of-the-box
- Containerization for legacy OS 

apps
- Complex services made easier
- Delivered using IaC

HPC and AI tooling
- Self-serve HPC/AI/Learning
- Standard and next-gen schedulers
- Enables to do what otherwise would be unfeasible
- Delivered using IaC and CI/CD

These concepts have been developed in conjunction with Intel 
and Lenovo, however further research was undertaken with 
national-scale infrastructure providers on how they address their 
environments in order to work on the OpenStack-Within-K8s 
paradigm.

This paradigm allows us to manage a huge range of bare-metal 
environments, alongside being able to use Kubernetes to 
provision underlying infrastructure at-scale, easily.

The command-set by using operators within Kubernetes means 
only one command-set needs to be understood – Kubernetes.

And even then? Ubiquity includes toolsets to reduce the overhead 
for that too.

An average of 139.10, Lowest 
being 134.12, peak being 
149.38 – A maximum worst-
case scenario of ~11.3% 
variance (best-to-worst) 
across all cores on the node, 
of which there were 64.

An average of 204.504, Lowest being 197.91, peak being 219.75 – A maximum worst-
case scenario of ~11% variance (best-to-worst) across all cores on the node, of which 
there were 24.


	Slide 1

