
© ECMWF November 24, 2023

Introduction to Parallel Computing

Iain Miller

Iain.miller@ecmwf.int



Overview

• What is Parallel Computing

• Building a Supercomputer

• Parallel Programming Paradigms

• Scaling Limitations

• Future Challenges

• Further Reading

2EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



What is Parallel Computing

The simultaneous use of more than one processor or computer to solve a problem

3EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



Why do we need Parallel Computing

• Generally, it is either:

– Serial Computing is too slow

– Need more memory than is accessible by a single processor

4EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



Building a Supercomputer

5EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



Supercomputer Building Blocks

• Smallest building block is a node

– Each node will have a number of 

sockets

– Each socket will have a processor 

chip

– Each processor chip will have a 

number of cores

– Each core may or may not have a 

number of execution hardware 

threads

– Each thread will have a vector 

width

• It is common for the lowest 

execution unit to be called a 

“Processing Element”

6EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Node
CHIP CHIP

Memory Memory

• Memory is attached in channels 

to each socket.

• Slower access times than 

on chip memory (cache)

• Usually accessible by all 

sockets

• Will have variable access 

times depending on core 

location



Supercomputing Building Blocks

• Nodes will be linked together with a 

interconnect

• Various Network Topologies can be used

– Fat Tree is commonly used

• Can be blocking or non-blocking, which 

determines the total available bandwidth 

available

– Dragonfly is becoming more popular

• Uses less cables, particularly on long links

• But less connection between groups

7EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Image from https://www.hpcwire.com/2019/07/15/super-connecting-the-supercomputers-innovations-through-network-topologies/



Supercomputer Building Blocks

• Traditionally a supercomputers “compute power” is expressed in it’s Flop rate or Flops

– 1 Flops = 1 double precision floating-point operation per second

– Double precision uses 64-bits to store a value

– THEORETICAL peak Flops of a supercomputer is Number of Floating-point operations per 

core per cycle multiplied by the number of cycles per second multiplied by the number of cores

• The world’s top supercomputers are ranked in the Top 500 (www.top500.org), which 

measures the SUSTAINED peak Flops managed by the LINPACK benchmark

– Solves a dense system of linear equations using LU factorization with partial pivoting

– Scales with the size of supercomputer and memory available

– Not representative of most scientific codes

– No 1 machine is Frontier at ORNL in USA – sustained rate of 1.194EFlops 

– HPCG 14.054PFlops (No. 2 in world behind Fugaku in Japan)

• No 1 machine in Europe is LUMI at CSC in Finland – sustained rate of 309.1PFlops

– HPCG 3.408PFlops

• Represents 71% efficiency

8EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

http://www.top500.org/


Supercomputing in Perspective

• If you compare the SUSTAINED computing power of Frontier to the “Human 

Computer”

– If every single one of the 8 billion people on Earth did one calculation per 

second it would take

• Over 4 years and 8 months and 23 days to exceed Frontier 
in 1 second

• Nearly 1 year and 3 months to exceed LUMI in 1 second

• 38 days 14 hours to exceed ECMWF 4 clusters in 1 second

9EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



Supercomputing building blocks

• Most codes will either be compute or memory bound:

– Compute bound codes are limited by the clock speed of the processor

– Memory bound codes are limited by the memory access bandwidth

– Not consistent within the code with some routines being one or the other

– Operational Intensity is the amount of processing work completed per byte of 

memory accesses

10EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



Poll – ECMWF Cluster Theoretical Peak

• There are four new clusters being installed into the datacentre in Bologna

– Each cluster has 1920 nodes

• Each node has 2 AMD Rome processors

– Each processor has:

» 64 cores

• Each core can do 4 Floating-point operations per cycle

» 2.25GHz clock speed

» 256-bit wide vector registers

– What is the Theorectical Maximum Flop rate for a cluster in PetaFlops?

• 1.1

• 2.2

• 4.4

• 8.8

11EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



Poll – ECMWF Cluster Theoretical Peak

• There are four new clusters being installed into the datacentre in Bologna

– Each cluster has 1920 nodes

• Each node has 2 AMD Rome processors

– Each processor has:

» 64 cores

• Each core can do 4 Floating-point operations per cycle

» 2.25GHz clock speed

» 256-bit wide vector registers

– What is the Theorectical Maximum Flop rate for a cluster in PetaFlops?

• 1.1

• 2.2

• 4.4

• 8.8

– 4 instructions per register * 4 registers per core * 128 cores per node * 1920 nodes * 2.25G

12EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



Parallel Programming Paradigms

13EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



Shared Memory Parallelism

• All processors can see all the memory

– Bandwidth may not be equal

• Entire domain within the memory

• Execution unit is commonly called a thread

• Need to explicitly protect some variables from being  

overwritten by other threads

• Most common programming paradigm is via OpenMP

– Pragma based programming

– Support is via the compiler

– Control via environment variables

14EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Memory

P P P P



Distributed Memory Parallelism

• Each processor can only see its own memory

• Domain decomposed across the different memories

• Execution unit is commonly called a Rank

• Data exchange has to be explicitly coded and 

managed through external library

– Often needed to store and transfer Halo information

• The most common programming paradigm is using 

MPI

– Standardised API 

– Several major implementation libraries

– Subtle differences between them

– Control through job launchers

15EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Memory

P

Memory

P

Memory

P

Memory

P

Network



Domain Splitting

16EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Imagine a domain grid like this



Domain Splitting – 4 Processors

17EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Grid is split evenly over 

4 processors



Domain Splitting - Haloes

18EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

• Cells labelled “D” are actual Domain 

Data for that processor

• what the processor applies its 

algorithms to 

• The different colours indicate what data 

needs to be shared with neighbouring 

processors

• May be needed for algorithms to 

work

• After each step data in the “haloes” 

needs to be exchanged to update each 

processor on changes calculated.



Exercise – Parallelism models

• Split the class into two groups

– 1 will be the Shared Memory group

– 1 will be the Distributed Memory group

19EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Shared Memory Group rules:

• Everyone can access the ”data” in the 

envelope

• Cannot pass data to other members

• Take two pieces of data

• Add them together

• write the result on one piece paper

• return to envelope

• Throw second piece of data away

• Repeat until there is only one piece of data 

left in the envelope

• This is your answer

Distributed Memory Group Rules

• Choose someone to be the ”Master”

• Only the Master can access the ”data” 

in the envelope

• Data can be shared between members

• Can only hold two pieces of “data” 

together at a time

• Add them together

• Write result on one piece of paper

• Throw second piece away

• Either pass result to another ready 

member or receive new data

• Maintain ”data” limits at all times

• When one result is left = answer



Hybrid Parallelism

• Most supercomputers now consist of a series of nodes linked together by a 

network

– Each node then consists of a number of processors with access to one or more 

banks of memory

• It is possible to run MPI across all the available processors

– But processors compete for access to memory and network

– Halo exchange becomes expensive

• Therefore hybrid methods have been developed that 

– decompose the domain across memory regions on the nodes 

– Intra-domain calculations use shared memory paradigms

– Inter-domain exchanges use distributed memory paradigms

20EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



Hybrid Parallelism

21EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Memory

P P P P

Memory

P P P P

Memory

P P P P

Memory

P P P P

Network

MPI 

Communications

OpenMP



Poll – Whether to use MPI or OpenMP 

• A simulation running in a serial code takes too long to complete and you 

want to parallelise it. The problem comfortably fits into the memory of a single 

node. What should you use for parallelisation?

– Shared Memory/OpenMP

– Distributed Memory/MPI

– Hybrid methods

– It depends

22EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



Poll – Whether to use MPI or OpenMP 

• A simulation running in a serial code takes too long to complete and you 

want to parallelise it. The problem comfortably fits into the memory of a single 

node. What should you use for parallelisation?

– Shared Memory/OpenMP

– Distributed Memory/MPI

– Hybrid methods

– It depends

23EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



  

  

  

  

  

  

 

 

 

 

 

            

                

                    

   

   

   

   

 
 
 
 
 
 
 

    

 
 

 
 

 
 

 
 
 

 
 
 

 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

Scaling Limitations

• There are two types of scaling

– Weak Scaling

• The amount of work per processor remains the same, i.e. Problem size is a factor of the 

number of processors

• Expectation is that the amount of runtime required stays constant as the number of 

processors increases

– Strong Scaling

• The overall size of the problem remains the same but the work per processor reduces 

as the number of processors increases

• Expectation is that the runtime decreases in proportion to the number of processors

• However, neither expectation is realized

• Speedup is limited by Amdahl’s Law

– The theoretical maximum is inversely proportional to portion of the code that 

cannot be parallelised

24EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Image from Wikipedia under creative commons

https://en.wikipedia.org/wiki/Amdahl%27s_law

https://en.wikipedia.org/wiki/Amdahl%27s_law


Scaling Limitations

• Some factors that affect scaling:

– Serial portions of code

– Load imbalance

• Not all processors are doing the same amount of work during the same period of time

– Synchronisation

– Limits in network

– Algorithmic limitations

– Running out of parallelism

25EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



Poll – Theorectical Scaling limits

• A serial code takes 1000s to run

– When parallelised there is parts of the code that still have to be run serially on 

each rank that takes 100s

– If perfect parallelisation can be achieved in the non-serial parts, what is the 

maximum speedup that can be reached?

• 2x

• 10x

• 100x

• 500x

26EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



Poll – Theorectical Scaling limits

• A serial code takes 1000s to run

– When parallelised there are parts of the code that still run serially on each rank 

that take 100s

– If perfect parallelisation can be achieved in the non-serial parts, what is the 

maximum speedup that can be reached?

• 2x

• 10x

• 100x

• 500x

27EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



Node

CHIP CHIP

Memory Memory

G
P

U

G
P

U

G
P

U

G
P

U

Future Challenges

• Data locality

– Increasing levels of memory hierarchy, including in NUMA and cache regions

• Accelerated computing

– Increases in computing coming more and more from attached “accelerator” such 

as General Purpose GPUs

• Need to change algorithms to expose more parallelism, may need to change 

programming language and paradigms too

• Increasing levels of parallelism

• Bottom of chain for hardware design

• Hardware resilience

– Fault-tolerant algorithms

• Power requirements

• Bit-reproducibility

28EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



Further Reading

• OpenMP Standards Community: https://www.openmp.org/

• Basic OpenMP Tutorial: https://hpc-tutorials.llnl.gov/openmp/ 

• MPI Standards Website: https://www.mpi-forum.org/docs/

• Basic MPI Tutorial: https://mpitutorial.com/tutorials/

• Jülich do online and in-person courses, next years to be posted: 

https://www.fz-juelich.de/en/ias/jsc/news/events/training-courses

29EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

https://www.openmp.org/
https://hpc-tutorials.llnl.gov/openmp/
https://www.mpi-forum.org/docs/
https://mpitutorial.com/tutorials/
https://www.fz-juelich.de/en/ias/jsc/news/events/training-courses


OpenMP Example

30EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

!$OMP PARALLEL DO SCHEDULE(STATIC,1)&

!$OMP& PRIVATE(JMLOCF,IM,ISTA,IEND)

DO JMLOCF=NPTRMF(MYSETN),NPTRMF(MYSETN+1)-1

IM=MYMS(JMLOCF)

ISTA=NSPSTAF(IM)

IEND=ISTA+2*(NSMAX+1-IM)-1

CALL SPCSI(CDCONF,IM,ISTA,IEND,LLONEM,ISPEC2V,&

&ZSPVORG,ZSPDIVG,ZSPTG,ZSPSPG)

ENDDO

!$OMP END PARALLEL DO



MPI Examples

31EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

int ping_pong_count = 0; 

int partner_rank = (world_rank + 1) % 2;

while (ping_pong_count < PING_PONG_LIMIT) {

if (world_rank == ping_pong_count % 2) { 

ping_pong_count++;

MPI_Send(&ping_pong_count, 1, MPI_INT,

partner_rank, 0, MPI_COMM_WORLD); 

printf("%d sent and incremented

ping_pong_count " "%d to %d\n”, 

world_rank, ping_pong_count, 

partner_rank); 

} else { 

MPI_Recv(&ping_pong_count, 1, MPI_INT,

partner_rank, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE); 

printf("%d received ping_pong_count %d

from %d\n", world_rank, ping_pong_count,

partner_rank); 

}

}

if (world_rank == 0) { 

rand_nums = create_rand_nums(elements_per_proc

* world_size); 

} 

float *sub_rand_nums = malloc(sizeof(float) * 

elements_per_proc); 

MPI_Scatter(rand_nums, elements_per_proc, MPI_FLOAT, 

sub_rand_nums, elements_per_proc, MPI_FLOAT, 0, 

MPI_COMM_WORLD); 

float sub_avg = compute_avg(sub_rand_nums, 

elements_per_proc); 

float *sub_avgs = NULL; 

if (world_rank == 0) { 

sub_avgs = malloc(sizeof(float) * world_size); 

} 

MPI_Gather(&sub_avg, 1, MPI_FLOAT, sub_avgs, 1, 

MPI_FLOAT, 0, MPI_COMM_WORLD); 

if (world_rank == 0) { 

float avg = compute_avg(sub_avgs, world_size); 

}

Examples from www.mpitutorial.com


	Slide 1
	Slide 2: Overview
	Slide 3: What is Parallel Computing
	Slide 4: Why do we need Parallel Computing
	Slide 5: Building a Supercomputer
	Slide 6: Supercomputer Building Blocks
	Slide 7: Supercomputing Building Blocks
	Slide 8: Supercomputer Building Blocks
	Slide 9: Supercomputing in Perspective
	Slide 10: Supercomputing building blocks
	Slide 11: Poll – ECMWF Cluster Theoretical Peak
	Slide 12: Poll – ECMWF Cluster Theoretical Peak
	Slide 13: Parallel Programming Paradigms
	Slide 14: Shared Memory Parallelism
	Slide 15: Distributed Memory Parallelism
	Slide 16: Domain Splitting
	Slide 17: Domain Splitting – 4 Processors
	Slide 18: Domain Splitting - Haloes
	Slide 19: Exercise – Parallelism models
	Slide 20: Hybrid Parallelism
	Slide 21: Hybrid Parallelism
	Slide 22: Poll – Whether to use MPI or OpenMP 
	Slide 23: Poll – Whether to use MPI or OpenMP 
	Slide 24: Scaling Limitations
	Slide 25: Scaling Limitations
	Slide 26: Poll – Theorectical Scaling limits
	Slide 27: Poll – Theorectical Scaling limits
	Slide 28: Future Challenges
	Slide 29: Further Reading
	Slide 30: OpenMP Example
	Slide 31: MPI Examples

