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Overview
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10 minutes • Fourier transform

• Spectral transform

30 minutes • hands-on exercises

• aliasing

• parallelization

• performance

20 minutes

rest • time for questions
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IFS (Integrated Forecast System)
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technology applied at ECMWF for 

the last 40 years

• spectral transform

• semi-Lagrangian

• semi-implicit
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technology applied at ECMWF for 

the last 40 years

• spectral transform

• semi-Lagrangian

• semi-implicit

pie chart: % of runtime in 9km 

operational forecast
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technology applied at ECMWF for 

the last 40 years

• spectral transform

• semi-Lagrangian

• semi-implicit

pie chart: % of runtime in 5km 

forecast (future operational)
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technology applied at ECMWF for 

the last 40 years

• spectral transform

• semi-Lagrangian

• semi-implicit

pie chart: % of runtime in 1.25km 

forecast (experiment, no ocean)
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Fourier transform
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location x

Fourier transform = Spectral transform in 1D
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Fourier transform
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location x

Fourier transform = Spectral transform in 1D
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Fourier transform = Spectral transform in 1D

Fourier transform
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grid point space Fourier space
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Fourier transform = Spectral transform in 1D

Fourier transform
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Fourier transform
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on the sphere: spectral transform

12
October 29, 2014

grid point space spectral space

= + + +...
spherical harmonics
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on the sphere: spectral transform
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spectral space

= + + +...
spherical harmonics

Latitude Longitude
Spherical harmonics

Spectral coefficients

Grid point variable

m: zonal wavenumber
n: total wavenumber

M: truncation

grid point space
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on the sphere: spectral transform
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Latitude Longitude
Spherical harmonics

Spectral coefficients

Grid point variable

m: zonal wavenumber
n: total wavenumber

M: truncation

Legendre polynomials

Legendre transform

Fourier transform
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time step in IFS

Grid-point space

   -semi-Lagrangian advection

   -physical parametrizations

   -products of terms

Fourier space

Spectral space

   -horizontal gradients

   -semi-implicit calculations 

   -horizontal diffusion

FFT

LT

Inverse FFT

Inverse LT

Fourier space

FFT: Fast Fourier Transform,  LT: Legendre Transform

No grid-staggering of 

prognostic variables
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hands-on session
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open in Jupyterlab in your browser: /NMcourse/spectral/solution.ipynb

open in a browser: anmrde.github.io/spectral

for everyone: interactive web-app about spectral transform

optional: Python course

files: exercises.ipynb: Python notebook with exercises
solution.ipynb: notebook including sample solutions

Exercises are getting more difficult. Feel free to skip exercises as you want. The full 
Python course is designed to fill 20 hours.

ECMWF Jupyterhub (16GB of RAM) or personal Linux computer:
https://github.com/anmrde/spectral/tree/master/jupyter

http://anmrde.github.io/spectral
https://github.com/anmrde/spectral/tree/master/jupyter
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aliasing

Issue: multiplication of two variables produces shorter 

waves than grid can handle
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aliasing

wave generated in spectral space

Issue: multiplication of two variables produces shorter 

waves than grid can handle
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aliasing

wave generated in spectral space

grid points

Issue: multiplication of two variables produces shorter 

waves than grid can handle
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aliasing

grid points

wave generated in spectral space

Issue: multiplication of two variables produces shorter 

waves than grid can handle
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aliasing

grid points

wave generated in spectral space

wave in grid point space
Issue: multiplication of two variables produces shorter 

waves than grid can handle
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aliasing example
500hPa adiabatic zonal wind tendencies (T159)

with aliasing filtered
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aliasing example
500hPa adiabatic meridional wind tendencies (T159)

with aliasing filtered
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aliasing example
kinetic energy spectra, 100 hPa

with aliasing filtered
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alternatives to using a filter

2N+1 gridpoints to N waves : linear grid

3N+1 gridpoints to N waves : quadratic grid

4N+1 gridpoints to N waves : cubic grid

~ 1-2 Δ

~ 2-3 Δ

~ 3-4 Δ

Spatial filter range

(Wedi, 2014)

Idea: use more grid points than spectral coefficients

Orszag, 1971:
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Cubic octahedral (Gaussian) grid of IFS 
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• No aliasing in nonlinear products

• Improved accuracy and mass conservation compared 

with linear grid

• Efficiency and scalability for large size problems: high 

grid-point resolution for a given spectral truncation 

i.e. expensive transforms become a smaller fraction 

of total computations

Collignon projection on the sphere: Number of points at latitude line i = 4 × i + 16, i = 1, . . . ,2N

Variation of grid-point 
resolution with latitude

For a given spectral triangular truncation N the cubic 

reduced octahedral Gaussian grid has:

• 2N points between pole and equator which coincide 

with Gaussian latitudes

• 4N+16 east-west points along the equator

• 4N(N+9) points in total
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effective resolution
of linear and cubic grids (Abdalla et al. 2013)
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inverse spectral transform

spectral data:

wave numbers
m=0,…,N;  n=0,…,N-m

(N: truncation)

fastest index left (column-major 
order like in Fortran)

fields (variables, 
height levels)

real and imaginary 
part
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inverse spectral transform

spectral data:

for each m:

even n odd n

m=0,…,N;  n=0,…,N-m
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inverse spectral transform

spectral data:

for each m:

even n odd n

m=0,…,N;  n=0,…,N-m

P: precomputed Legendre 
polynomials

matrix 
multiplications
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inverse spectral transform

spectral data:

for each m:

even n odd n

m=0,…,N;  n=0,…,N-m

P: precomputed Legendre 
polynomials

matrix 
multiplications



32

inverse spectral transform

spectral data:

for each m:

even n odd n

m=0,…,N;  n=0,…,N-m

P: precomputed Legendre 
polynomials

FFT: Fast Fourier Transformfor each ɸ,f:

matrix 
multiplications
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inverse spectral transform

spectral data:

for each m:

even n odd n

m=0,…,N;  n=0,…,N-m

P: precomputed Legendre 
polynomials

grid point data:

FFT: Fast Fourier Transformfor each ɸ,f:

matrix 
multiplications
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inverse spectral transform

spectral data:

for each m:

even n odd n

grid point data:

for each ɸ,f:

spectral space

inverse Legendre transform

inverse Fourier transform

grid point space



35

inverse spectral transform

spectral data:

for each m:

even n odd n

grid point data:

for each ɸ,f:

spectral space m,n

m,finverse Legendre transform

parallelisation 
over these indices

ɸ,f

ɸ,λ

inverse Fourier transform

grid point space
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inverse spectral transform

spectral data:

for each m:

even n odd n

grid point data:

for each ɸ,f:

spectral space m,n

m,finverse Legendre transform

parallelisation 
over these indices

ɸ,f

ɸ,λ

inverse Fourier transform

grid point space

lots of MPI 
communication
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direct spectral transform

• same like inverse spectral transform

• reverse order

• multiply data with Gaussian 

quadrature weights before Legendre 

transform
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performance comparison of IFS with other models

(Michalakes et al, NGGPS 

AVEC report, 2015)

IFS
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scalability comparison of IFS with other models

IFS

(Michalakes et al, NGGPS 

AVEC report, 2015)
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IFS scaling on Summit and PizDaint (CPU only)
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GPUs vs CPUs on Summit
spectral transform only
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Optalysys: optical processor
for spectral transform

Figures used with permission from Optalysys, 2017
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Questions?
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