Spectral Transform

Andreas Mueller ECMWF, Bonn, Germany andreas.mueller@ecmwf.int

© ECMWF November 15, 2023

10 minutes	•	Fou Spe
30 minutes	•	han
20 minutes	•	alia para per

rest

urier transform ectral transform

nds-on exercises

asing

rallelization

rformance

• time for questions

technology applied at ECMWF for the last 40 years

- spectral transform
- semi-Lagrangian
- semi-implicit

3

technology applied at ECMWF for the last 40 years

- spectral transform
- semi-Lagrangian
- semi-implicit

pie chart: % of runtime in 9km operational forecast

spectral transform grid point dynamics wave model

technology applied at ECMWF for the last 40 years

- spectral transform
- semi-Lagrangian
- semi-implicit

pie chart: % of runtime in 5km forecast (future operational)

spectral transform
grid point dynamics
wave model

semi-implicit solver

- physics+radiation
- ocean model

technology applied at ECMWF for the last 40 years

- spectral transform
- semi-Lagrangian
- semi-implicit

pie chart: % of runtime in 1.25km forecast (experiment, no ocean)

spectral transform
grid point dynamics
wave model

- semi-implicit solver
- physics+radiation
- ocean model

Fourier transform = Spectral transform in 1D

location x

Fourier transform = Spectral transform in 1D

location x

Fourier transform

Fourier transform = Spectral transform in 1D

grid point space

Fourier space

Fourier transform

ECMWF

n

on the sphere: spectral transform

grid point space

spectral space

on the sphere: spectral transform

on the sphere: spectral transform

$$f(\phi, \lambda) = \Re\left(\sum_{m=0}^{M}\right)$$

time step in IFS

FFT: Fast Fourier Transform, LT: Legendre Transform

hands-on session

for everyone: interactive web-app about spectral transform open in a browser: anmrde.github.io/spectral

optional: Python course

open in Jupyterlab in your browser: /NMcourse/spectral/solution.ipynb

Exercises are getting more difficult. Feel free to skip exercises as you want. The full Python course is designed to fill 20 hours.

exercises.ipynb: Python notebook with exercises files:

ECMWF Jupyterhub (16GB of RAM) or personal Linux computer: https://github.com/anmrde/spectral/tree/master/jupyter

solution.ipynb: notebook including sample solutions

Issue: multiplication of two variables produces shorter waves than grid can handle

Issue: multiplication of two variables produces shorter waves than grid can handle

Issue: multiplication of two variables produces shorter waves than grid can handle

Issue: multiplication of two variables produces shorter waves than grid can handle

Issue: multiplication of two variables produces shorter waves than grid can handle

wave in grid point space

aliasing example 500hPa adiabatic zonal wind tendencies (T159)

120104

100710

80.00

80° W

aliasing example 500hPa adiabatic meridional wind tendencies (T159)

with aliasing

filtered

alternatives to using a filter

Idea: use more grid points than spectral coefficients Orszag, 1971:

2N+1 gridpoints to N waves : linear grid

3N+1 gridpoints to N waves : quadratic grid

4N+1 gridpoints to N waves : cubic grid

~ 1-2 Δ ~ 2-3 Δ ~ 3-4 ∆ (Wedi, 2014)

Spatial filter range

Cubic octahedral (Gaussian) grid of IFS

Collignon projection on the sphere: Number of points at latitude line $i = 4 \times i + 16$, i = 1, ..., 2N

Variation of grid-point resolution with latitude

- No aliasing in nonlinear products \bullet
- Improved accuracy and mass conservation compared ${\color{black}\bullet}$ with linear grid
- Efficiency and scalability for large size problems: high ${\bullet}$ grid-point resolution for a given spectral truncation i.e. expensive transforms become a smaller fraction of total computations

For a given spectral triangular truncation N the cubic reduced octahedral Gaussian grid has:

- 2N points between pole and equator which coincide with Gaussian latitudes
- 4N+16 east-west points along the equator
- 4N(N+9) points in total

effective resolution of linear and cubic grids (Abdalla et al. 2013)

part

fastest index left (column-major order like in Fortran)

wave numbers m=0,...,N; n=0,...,N-m (N: truncation)

for each m:

$\mathbf{D}_{e,m}(f,\mathrm{i},n)$

m=0,...,N; n=0,...,N-m

$\mathbf{D}_{o,m}(f,\mathbf{i},n)$

for each m:

$$\mathbf{S}_{m}(f,\mathbf{i},\phi) = \sum_{n} \mathbf{D}_{e,m}(f,\mathbf{i},n) \cdot \mathbf{P}_{e,m}(n,\phi), \ \mathbf{A}_{m}(f,\mathbf{i},\phi) = \sum_{n} \mathbf{D}_{o,m}(f,\mathbf{i},n) \cdot \mathbf{P}_{o,m}(n,\phi)$$

m=0,...,N; n=0,...,N-m

P: precomputed Legendre polynomials

> matrix multiplications

for each m:

$$\mathbf{S}_{m}(f,\mathbf{i},\phi) = \sum_{n} \mathbf{D}_{e,m}(f,\mathbf{i},n) \cdot \mathbf{P}_{e,m}(n,\phi), \quad \mathbf{A}_{m}(f,\mathbf{i},\phi) = \sum_{n} \mathbf{D}_{o,m}(f,\mathbf{i},n) \cdot \mathbf{P}_{o,m}(n,\phi)$$

$$\phi > 0: \quad \mathbf{F}(\mathbf{i},m,\phi,f) = \mathbf{S}_{m}(f,\mathbf{i},\phi) + \mathbf{A}_{m}(f,\mathbf{i},\phi)$$

$$\phi < 0: \quad \mathbf{F}(\mathbf{i},m,\phi,f) = \mathbf{S}_{m}(f,\mathbf{i},-\phi) - \mathbf{A}_{m}(f,\mathbf{i},-\phi)$$

m=0,...,N; n=0,...,N-m

P: precomputed Legendre polynomials

matrix multiplications

for each m:

$$\mathbf{S}_{m}(f,\mathbf{i},\phi) = \sum_{n} \mathbf{D}_{e,m}(f,\mathbf{i},n) \cdot \mathbf{P}_{e,m}(n,\phi), \quad \mathbf{A}_{m}(f,\mathbf{i},\phi) = \sum_{n} \mathbf{D}_{o,m}(f,\mathbf{i},n) \cdot \mathbf{P}_{o,m}(n,\phi)$$
$$\phi > 0: \quad \mathbf{F}(\mathbf{i},m,\phi,f) = \mathbf{S}_{m}(f,\mathbf{i},\phi) + \mathbf{A}_{m}(f,\mathbf{i},\phi)$$
$$\phi < 0: \quad \mathbf{F}(\mathbf{i},m,\phi,f) = \mathbf{S}_{m}(f,\mathbf{i},-\phi) - \mathbf{A}_{m}(f,\mathbf{i},-\phi)$$

for each φ,f:

 $\mathbf{G}_{\phi,f}(\lambda) = \mathrm{FFT}(\mathbf{F}_{\phi,f}(\mathbf{i},m))$

ECMWF

m=0,...,N; n=0,...,N-m

P: precomputed Legendre polynomials

matrix multiplications

FFT: Fast Fourier Transform

for each m:

$$\mathbf{S}_{m}(f,\mathbf{i},\phi) = \sum_{n} \mathbf{D}_{e,m}(f,\mathbf{i},n) \cdot \mathbf{P}_{e,m}(n,\phi), \quad \mathbf{A}_{m}(f,\mathbf{i},\phi) = \sum_{n} \mathbf{D}_{o,m}(f,\mathbf{i},n) \cdot \mathbf{P}_{o,m}(n,\phi)$$
$$\phi > 0: \quad \mathbf{F}(\mathbf{i},m,\phi,f) = \mathbf{S}_{m}(f,\mathbf{i},\phi) + \mathbf{A}_{m}(f,\mathbf{i},\phi)$$
$$\phi < 0: \quad \mathbf{F}(\mathbf{i},m,\phi,f) = \mathbf{S}_{m}(f,\mathbf{i},-\phi) - \mathbf{A}_{m}(f,\mathbf{i},-\phi)$$

for each ϕ ,f:

 $\mathbf{G}_{\phi,f}(\lambda) = \mathrm{FFT}(\mathbf{F}_{\phi,f}(\mathbf{i},m))$

grid point data:

 $\mathbf{G}(f,\lambda,\phi)$

m=0,...,N; n=0,...,N-m

P: precomputed Legendre polynomials

matrix multiplications

FFT: Fast Fourier Transform

$$\mathbf{S}_{m}(f, \mathbf{i}, \phi) = \sum_{n} \mathbf{D}_{e,m}(f, \mathbf{i}, n) \cdot \mathbf{P}_{e,m}(n, \phi),$$
$$\mathbf{A}_{m}(f, \mathbf{i}, \phi) = \sum_{n} \mathbf{D}_{o,m}(f, \mathbf{i}, n) \cdot \mathbf{P}_{o,m}(n, \phi)$$

 $\phi > 0$: $\mathbf{F}(\mathbf{i}, m, \phi, f) = \mathbf{S}_m(f, \mathbf{i}, \phi) + \mathbf{A}_m(f, \mathbf{i}, \phi)$

 $\phi < 0$: $\mathbf{F}(\mathbf{i}, m, \phi, f) = \mathbf{S}_m(f, \mathbf{i}, -\phi) - \mathbf{A}_m(f, \mathbf{i}, -\phi)$

for each ϕ ,f: $\mathbf{G}_{\phi,f}(\lambda) = \mathrm{FFT}(\mathbf{F}_{\phi,f}(\mathbf{i},m))$

grid point data: $\mathbf{G}(f, \lambda, \phi)$

spectral space

inverse Legendre transform

inverse Fourier transform

grid point space

$$\mathbf{S}_{m}(f, \mathbf{i}, \phi) = \sum_{n} \mathbf{D}_{e,m}(f, \mathbf{i}, n) \cdot \mathbf{P}_{e,m}(n, \phi),$$
$$\mathbf{A}_{m}(f, \mathbf{i}, \phi) = \sum_{n} \mathbf{D}_{o,m}(f, \mathbf{i}, n) \cdot \mathbf{P}_{o,m}(n, \phi)$$

 $\phi > 0$: $\mathbf{F}(\mathbf{i}, m, \phi, f) = \mathbf{S}_m(f, \mathbf{i}, \phi) + \mathbf{A}_m(f, \mathbf{i}, \phi)$

 $\phi < 0$: $\mathbf{F}(\mathbf{i}, m, \phi, f) = \mathbf{S}_m(f, \mathbf{i}, -\phi) - \mathbf{A}_m(f, \mathbf{i}, -\phi)$

for each ϕ ,f: $\mathbf{G}_{\phi,f}(\lambda) = \mathrm{FFT}(\mathbf{F}_{\phi,f}(\mathbf{i},m))$

grid point data: $\mathbf{G}(f, \lambda, \phi)$

spectral space

parallelisation over these indices

inverse Fourier transform φ,f

grid point space

φ,λ

$$\mathbf{S}_{m}(f, \mathbf{i}, \phi) = \sum_{n} \mathbf{D}_{e,m}(f, \mathbf{i}, n) \cdot \mathbf{P}_{e,m}(n, \phi),$$
$$\mathbf{A}_{m}(f, \mathbf{i}, \phi) = \sum_{n} \mathbf{D}_{o,m}(f, \mathbf{i}, n) \cdot \mathbf{P}_{o,m}(n, \phi)$$

 $\phi > 0$: $\mathbf{F}(\mathbf{i}, m, \phi, f) = \mathbf{S}_m(f, \mathbf{i}, \phi) + \mathbf{A}_m(f, \mathbf{i}, \phi)$

 $\phi < 0$: $\mathbf{F}(\mathbf{i}, m, \phi, f) = \mathbf{S}_m(f, \mathbf{i}, -\phi) - \mathbf{A}_m(f, \mathbf{i}, -\phi)$

for each ϕ ,f: $\mathbf{G}_{\phi,f}(\lambda) = \mathrm{FFT}(\mathbf{F}_{\phi,f}(\mathbf{i},m))$

grid point data: $\mathbf{G}(f, \lambda, \phi)$

spectral space

parallelisation over these indices

lots of MPI communication

inverse Legendre transform

inverse Fourier transform

grid point space

direct spectral transform

- same like inverse spectral transform
- reverse order
- multiply data with Gaussian quadrature weights before Legendre transform

performance comparison of IFS with other models

13km Case: Speed Normalized to Operational Threshold (8.5 mins per day)

(Michalakes et al, NGGPS) AVEC report, 2015)

scalability comparison of IFS with other models

ECMWF

(Michalakes et al, NGGPS) AVEC report, 2015)

IFS scaling on Summit and PizDaint (CPU only)

Forecast Days / Day

GPUs vs CPUs on Summit spectral transform only

TCO3999 (2.5km)

At 2.5km resolution, less than 1s per time-step fits operational needs.

This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE office of Science User Facility supported under contract DE-AC05-000R22725.

Optalysys: optical processor for spectral transform

Figures used with permission from Optalysys, 2017

Questions?

