Spectral Transform

Andreas Mueller
ECMWF, Bonn, Germany
andreas.mueller@ecmwf.int

Overview

10 minutes

30 minutes

20 minutes
rest

- Fourier transform
- Spectral transform
- hands-on exercises
- aliasing
- parallelization
- performance
- time for questions

IFS (Integrated Forecast System)

technology applied at ECMWF for the last 40 years

- spectral transform
- semi-Lagrangian
- semi-implicit

IFS (Integrated Forecast System)

technology applied at ECMWF for the last 40 years

- spectral transform
- semi-Lagrangian
- semi-implicit
pie chart: \% of runtime in 9km operational forecast
- spectral transform

■ semi-implicit solver 24\%
$■$ grid point dynamics

- wave model
$■$ physics+radiation
- ocean model

IFS (Integrated Forecast System)

technology applied at ECMWF for the last 40 years

- spectral transform
- semi-Lagrangian
- semi-implicit
pie chart: \% of runtime in 5 km forecast (future operational)
- spectral transform

■ semi-implicit solver
$■$ grid point dynamics

- wave model

■ physics+radiation

- ocean model

IFS (Integrated Forecast System)

technology applied at ECMWF for the last 40 years

- spectral transform
- semi-Lagrangian
- semi-implicit
pie chart: \% of runtime in 1.25 km forecast (experiment, no ocean)
- spectral transform

■ semi-implicit solver
$■$ grid point dynamics

- wave model

■ physics+radiation

- ocean model

Fourier transform

Fourier transform = Spectral transform in 1D

location x

Fourier transform

Fourier transform = Spectral transform in 1D

location x

Fourier transform

Fourier transform = Spectral transform in 1D

grid point space
Fourier space

Fourier transform

Fourier transform

differenentition

$$
\frac{\mathrm{d} f(x)}{\mathrm{dx}}=\sum_{n}\left(-2 \pi \mathrm{i} n f_{n}\right) \cdot \mathrm{e}^{-2 \pi \mathrm{i} n x} \text { multinindicele }
$$

on the sphere: spectral transform
grid point space

spectral space

on the sphere: spectral transform

Spectral coefficients

on the sphere: spectral transform

Spectral coefficients

time step in IFS

FFT: Fast Fourier Transform, LT: Legendre Transform

hands-on session

for everyone: interactive web-app about spectral transform open in a browser: anmrde.github.io/spectral

optional: Python course

open in Jupyterlab in your browser: /NMcourse/spectral/solution.ipynb Exercises are getting more difficult. Feel free to skip exercises as you want. The full Python course is designed to fill 20 hours.
files: exercises.ipynb: Python notebook with exercises solution.ipynb: notebook including sample solutions

ECMWF Jupyterhub (16GB of RAM) or personal Linux computer:
https://github.com/anmrde/spectral/tree/master/jupyter
aliasing

Issue: multiplication of two variables produces shorter waves than grid can handle

aliasing

wave generated in spectral space

Issue: multiplication of two variables produces shorter
waves than grid can handle
※ECMWF

aliasing

wave generated in spectral space

Issue: multiplication of two variables produces shorter waves than grid can handle

aliasing

wave generated in spectral space

Issue: multiplication of two variables produces shorter waves than grid can handle

Issue: multiplication of two variables produces shorter waves than grid can handle
wave in grid point space
aliasing example
500 hPa adiabatic zonal wind tendencies (T159)

aliasing example
500hPa adiabatic meridional wind tendencies (T159)

with aliasing

filtered

aliasing example

kinetic energy spectra, 100 hPa

alternatives to using a filter

Idea: use more grid points than spectral coefficients
Orszag, 1971:
$2 N+1$ gridpoints to N waves : linear grid
$3 \mathrm{~N}+1$ gridpoints to N waves : quadratic grid
$4 N+1$ gridpoints to N waves : cubic grid
$\sim 1-2 \Delta$
$\sim 2-3 \Delta$
~3-4 $\Delta \quad$ (Wedi, 2014)

Spatial filter range

Cubic octahedral (Gaussian) grid of IFS

- No aliasing in nonlinear products

- Improved accuracy and mass conservation compared with linear grid
- Efficiency and scalability for large size problems: high grid-point resolution for a given spectral truncation i.e. expensive transforms become a smaller fraction of total computations

Collignon projection on the sphere: Number of points at latitude line $i=4 \times i+16, i=1, \ldots, 2 N$

Variation of grid-point resolution with latitude

For a given spectral triangular truncation N the cubic reduced octahedral Gaussian grid has:

- 2 N points between pole and equator which coincide with Gaussian latitudes
- $4 \mathrm{~N}+16$ east-west points along the equator
- $4 \mathrm{~N}(\mathrm{~N}+9)$ points in total

effective resolution

of linear and cubic grids (Abdalla et al. 2013)

inverse spectral transform
spectral data: $\quad \mathbf{D}(f, \mathrm{i}, n, m)$
$m=0, \ldots, N ; n=0, \ldots, N-m$

	spectral data:	$\mathbf{D}(f, \mathrm{i}, n, m)$
for each $\mathrm{m}:$	even n	$\mathbf{D}_{e, m}(f, \mathrm{i}, n)$

inverse spectral transform

$$
\text { spectral data: } \quad \mathbf{D}(f, \mathrm{i}, n, m)
$$

$m=0, \ldots, N ; n=0, \ldots, N-m$
P: precomputed Legendre polynomials
for each m :

$$
\mathbf{S}_{m}(f, \mathrm{i}, \phi)=\sum_{n} \mathbf{D}_{e, m}(f, \mathrm{i}, n) \cdot \mathbf{P}_{e, m}(n, \phi), \quad \mathbf{A}_{m}(f, \mathrm{i}, \phi)=\sum_{n} \mathbf{D}_{o, m}(f, \mathrm{i}, n) \cdot \mathbf{P}_{o, m}(n, \phi)
$$

matrix multiplications
inverse spectral transform

$$
\text { spectral data: } \quad \mathbf{D}(f, \mathrm{i}, n, m)
$$

even n

$m=0, \ldots, N ; n=0, \ldots, N-m$
P: precomputed Legendre polynomials
for each m:

$$
\mathbf{S}_{m}(f, \mathrm{i}, \phi)=\sum_{n} \mathbf{D}_{e, m}(f, \mathrm{i}, n) \cdot \mathbf{P}_{e, m}(n, \phi), \quad \mathbf{A}_{m}(f, \mathrm{i}, \phi)=\sum_{n} \mathbf{D}_{o, m}(f, \mathrm{i}, n) \cdot \mathbf{P}_{o, m}(n, \phi)
$$

$$
\begin{aligned}
& \phi>0: \mathbf{F}(\mathrm{i}, m, \phi, f)=\mathbf{S}_{m}(f, \mathrm{i}, \phi)+\mathbf{A}_{m}(f, \mathrm{i}, \phi) \\
& \phi<0: \mathbf{F}(\mathrm{i}, m, \phi, f)=\mathbf{S}_{m}(f, \mathrm{i},-\phi)-\mathbf{A}_{m}(f, \mathrm{i},-\phi)
\end{aligned}
$$

inverse spectral transform

$$
\text { spectral data: } \quad \mathbf{D}(f, \mathrm{i}, n, m)
$$

even n

$m=0, \ldots, N ; n=0, \ldots, N-m$
P: precomputed Legendre polynomials
for each m:

$$
\mathbf{S}_{m}(f, \mathrm{i}, \phi)=\sum_{n} \mathbf{D}_{e, m}(f, \mathrm{i}, n) \cdot \mathbf{P}_{e, m}(n, \phi), \quad \mathbf{A}_{m}(f, \mathrm{i}, \phi)=\sum_{n} \mathbf{D}_{o, m}(f, \mathrm{i}, n) \cdot \mathbf{P}_{o, m}(n, \phi)
$$

matrix multiplications

$$
\begin{aligned}
& \phi>0: \mathbf{F}(\mathrm{i}, m, \phi, f)=\mathbf{S}_{m}(f, \mathrm{i}, \phi)+\mathbf{A}_{m}(f, \mathrm{i}, \phi) \\
& \phi<0: \mathbf{F}(\mathrm{i}, m, \phi, f)=\mathbf{S}_{m}(f, \mathrm{i},-\phi)-\mathbf{A}_{m}(f, \mathrm{i},-\phi)
\end{aligned}
$$

for each ϕ, f :

$$
\mathbf{G}_{\phi, f}(\lambda)=\operatorname{FFT}\left(\mathbf{F}_{\phi, f}(\mathrm{i}, m)\right)
$$

FFT: Fast Fourier Transform
inverse spectral transform

$$
\text { spectral data: } \quad \mathbf{D}(f, \mathrm{i}, n, m)
$$

even n

$m=0, \ldots, N ; n=0, \ldots, N-m$
P: precomputed Legendre polynomials
for each m:

$$
\mathbf{S}_{m}(f, \mathrm{i}, \phi)=\sum_{n} \mathbf{D}_{e, m}(f, \mathrm{i}, n) \cdot \mathbf{P}_{e, m}(n, \phi), \quad \mathbf{A}_{m}(f, \mathrm{i}, \phi)=\sum_{n} \mathbf{D}_{o, m}(f, \mathrm{i}, n) \cdot \mathbf{P}_{o, m}(n, \phi)
$$

matrix multiplications

$$
\begin{aligned}
& \phi>0: \mathbf{F}(\mathrm{i}, m, \phi, f)=\mathbf{S}_{m}(f, \mathrm{i}, \phi)+\mathbf{A}_{m}(f, \mathrm{i}, \phi) \\
& \phi<0: \mathbf{F}(\mathrm{i}, m, \phi, f)=\mathbf{S}_{m}(f, \mathrm{i},-\phi)-\mathbf{A}_{m}(f, \mathrm{i},-\phi)
\end{aligned}
$$

for each ϕ, f :

$$
\mathbf{G}_{\phi, f}(\lambda)=\operatorname{FFT}\left(\mathbf{F}_{\phi, f}(\mathrm{i}, m)\right)
$$

FFT: Fast Fourier Transform
grid point data: $\quad \mathbf{G}(f, \lambda, \phi)$
inverse spectral transform
spectral data: $\quad \mathbf{D}(f, \mathrm{i}, n, m)$
even n
for each m :

$$
\begin{aligned}
& \mathbf{S}_{m}(f, \mathrm{i}, \phi)=\sum_{n} \mathbf{D}_{e, m}(f, \mathrm{i}, n) \cdot \mathbf{P}_{e, m}(n, \phi) \\
& \mathbf{A}_{m}(f, \mathrm{i}, \phi)=\sum_{n} \mathbf{D}_{o, m}(f, \mathrm{i}, n) \cdot \mathbf{P}_{o, m}(n, \phi) \\
& \phi>0: \mathbf{F}(\mathrm{i}, m, \phi, f)=\mathbf{S}_{m}(f, \mathrm{i}, \phi)+\mathbf{A}_{m}(f, \mathrm{i}, \phi) \\
& \phi<0: \mathbf{F}(\mathrm{i}, m, \phi, f)=\mathbf{S}_{m}(f, \mathrm{i},-\phi)-\mathbf{A}_{m}(f, \mathrm{i},-\phi)
\end{aligned}
$$

for each $\phi, \mathrm{f}: \quad \mathbf{G}_{\phi, f}(\lambda)=\operatorname{FFT}\left(\mathbf{F}_{\phi, f}(\mathrm{i}, m)\right)$
grid point data: $\quad \mathbf{G}(f, \lambda, \phi)$
spectral space
inverse Legendre transform
inverse Fourier transform
grid point space
inverse spectral transform
spectral data: $\quad \mathbf{D}(f, \mathrm{i}, n, m)$
even n
for each m :

$$
\begin{aligned}
& \mathbf{S}_{m}(f, \mathrm{i}, \phi)=\sum_{n} \mathbf{D}_{e, m}(f, \mathrm{i}, n) \cdot \mathbf{P}_{e, m}(n, \phi), \\
& \mathbf{A}_{m}(f, \mathrm{i}, \phi)=\sum_{n} \mathbf{D}_{o, m}(f, \mathrm{i}, n) \cdot \mathbf{P}_{o, m}(n, \phi) \\
& \phi>0: \mathbf{F}(\mathrm{i}, m, \phi, f)=\mathbf{S}_{m}(f, \mathrm{i}, \phi)+\mathbf{A}_{m}(f, \mathrm{i}, \phi) \\
& \phi<0: \mathbf{F}(\mathrm{i}, m, \phi, f)=\mathbf{S}_{m}(f, \mathrm{i},-\phi)-\mathbf{A}_{m}(f, \mathrm{i},-\phi)
\end{aligned}
$$

for each ϕ, f

$$
\mathbf{G}_{\phi, f}(\lambda)=\operatorname{FFT}\left(\mathbf{F}_{\phi, f}(\mathrm{i}, m)\right)
$$

grid point data: $\quad \mathbf{G}(f, \lambda, \phi)$
spectral space
m, n
parallelisation over these indices
inverse spectral transform
spectral data: $\quad \mathbf{D}(f, \mathrm{i}, n, m)$
even n

for each m :

$$
\begin{aligned}
& \mathbf{S}_{m}(f, \mathrm{i}, \phi)=\sum_{n} \mathbf{D}_{e, m}(f, \mathrm{i}, n) \cdot \mathbf{P}_{e, m}(n, \phi), \\
& \mathbf{A}_{m}(f, \mathrm{i}, \phi)=\sum_{n} \mathbf{D}_{o, m}(f, \mathrm{i}, n) \cdot \mathbf{P}_{o, m}(n, \phi) \\
& \phi>0: \mathbf{F}(\mathrm{i}, m, \phi, f)=\mathbf{S}_{m}(f, \mathrm{i}, \phi)+\mathbf{A}_{m}(f, \mathrm{i}, \phi) \\
& \phi<0: \mathbf{F}(\mathrm{i}, m, \phi, f)=\mathbf{S}_{m}(f, \mathrm{i},-\phi)-\mathbf{A}_{m}(f, \mathrm{i},-\phi)
\end{aligned}
$$

for each ϕ, f

$$
\mathbf{G}_{\phi, f}(\lambda)=\operatorname{FFT}\left(\mathbf{F}_{\phi, f}(\mathrm{i}, m)\right)
$$

grid point data: $\quad \mathbf{G}(f, \lambda, \phi)$
spectral space
parallelisation over these indices

lots of MPI communication

inverse Legendre transform
inverse Fourier transform
grid point space
m, f

ϕ, f \downarrow
m, n
direct spectral transform

- same like inverse spectral transform
- reverse order
- multiply data with Gaussian quadrature weights before Legendre transform

performance comparison of IFS with other models

scalability comparison of IFS with other models

IFS scaling on Summit and PizDaint (CPU only)

GPUs vs CPUs on Summit

spectral transform only

TCO3999 (2.5km)

At 2.5 km resolution, less than 1 s per time-step fits operational needs.

This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE office of Science User Facility supported under contract DE-AC05-000R22725.

Optalysys: optical processor for spectral transform

Questions?

