Orographic drag and gravity wave drag

Annelize van Niekerk, Irina Sandu, Anton Beljaars

Annelize.vanNiekerk@ecmwf.int

© ECMWF November 24, 2023

Contents

- Different drag processes in the atmosphere
- Orographic gravity wave drag
- Orographic flow blocking drag
- Turbulent orographic form drag
- Non-orographic gravity wave drag

non-orographic gravity wave drag

Orographic flow blocking drag

Propagating orographic gravity wave drag

Turbulent orographic drag

Turbulent / roughness drag

non-orographic gravity wave drag

> Propagating orographic gravity wave drag

Orographic flow blocking drag

Turbulent orographic

drag

In stably stratified atmosphere, this leads to denser air being pushed up

Potential

This creates a vertically propagating wave throughout the atmosphere

CECMWF

They affect Polar Vortex Variability

During Vortex breakdown

Gravity waves change the winds and temperatures in the Polar Vortex

NASA Ozone watch

CECMWF

Stratosphere is important for surface predictability

NEWS

BBC A annelize

Home | Coronavirus | Climate | UK | World | Business | Politics | Tech | Science | Health | Family & Education

News

Weather

iPlayer

Sounds

Sport

Home

World Africa Asia Australia Europe Latin America Middle East US & Canada

۰

Polar vortex death toll rises to 21 as US cold snap continues

() 1 February 2019

Chicago's frozen shoreline

At least 21 people have died in one of the worst cold snaps to hit the US Midwest in decades.

<u>nature</u> > <u>communications earth & environment</u> > <u>articles</u> > article

Article | Open Access | Published: 23 July 2021

Northern hemisphere cold air outbreaks are more likely to be severe during weak polar vortex conditions

Jinlong Huang, Peter Hitchcock 🖾, Amanda C. Maycock, Christine M. McKenna & Wenshou Tian 🖾

 Communications Earth & Environment
 2, Article number: 147 (2021)
 Cite this article

 2074
 Accesses
 10
 Altmetric
 Metrics

Abstract

Severe cold air outbreaks have significant impacts on human health, energy use, agriculture, and transportation. Anomalous behavior of the Arctic stratospheric polar vortex provides an important source of subseasonal-to-seasonal predictability of Northern Hemisphere cold air outbreaks. Here, through reanalysis data for the period 1958–2019 and climate model simulations for preindustrial conditions, we show that weak stratospheric polar vortex conditions increase the risk of severe cold air outbreaks in mid-latitude East Asia by 100%, in contrast to only 40% for moderate cold air outbreaks. Such a disproportionate increase is also found in Europe, with an elevated risk persisting more than three weeks. By analysing the stream of polar cold air mass, we show that the polar vortex affects severe cold air outbreaks by modifying the inter-hemispheric transport of cold air mass. Using a novel method to assess Granger causality, we show that the polar vortex provides predictive information regarding severe cold air outbreaks over multiple regions in the Northern Hemisphere, which may help with mitigating their impact.

non-orographic gravity wave drag

> Orographic flow blocking drag

Propagating orographic gravity wave drag

Turbulent orographic

drag

Turbulent / roughness drag

Orographic flow blocking and gravity wave drag

2.5 km model simulation over the Antarctic Peninsula with Met Office Unified Model

Strong surface wind \rightarrow large amplitude waves

~100 km

Weak surface wind \rightarrow flow is blocked

Vertical Velocity

Wind speed

Orography and model resolution

Resolved gravity wave drag increases when more mountains are resolved

Orography and model resolution

CECMWF

Momentum

Mass Continuity

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \boldsymbol{u} = 0$$

Thermodynamics

$$\frac{D\theta}{Dt} = \frac{\theta}{T} \frac{\dot{Q}}{c_p}$$
ECMWF

Momentum

 $\boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho} \frac{\partial p}{\partial x}$ $\boldsymbol{u} \cdot \nabla \boldsymbol{v} = -\frac{1}{\rho} \frac{\partial p}{\partial y}$ $\frac{\partial p}{\partial r} = -\rho g$

Mass Continuity

$$\nabla \cdot \boldsymbol{u} = 0$$

Thermodynamics

$$\frac{D\theta}{Dt} = 0$$

Following approximations are made:

Cartesian coordinates Shallow atmosphere No rotation Adiabatic + incompressible Hydrostatic Steady state

Momentum

$$U\frac{\partial u'}{\partial x} + V\frac{\partial u'}{\partial y} + w'\frac{\partial U}{\partial z} = -\frac{1}{\rho}\frac{\partial p'}{\partial x}$$
$$U\frac{\partial v'}{\partial x} + V\frac{\partial v'}{\partial y} + w'\frac{\partial V}{\partial z} = -\frac{1}{\rho}\frac{\partial p'}{\partial y}$$
$$\frac{\partial p'}{\partial z} = -\rho g$$

Mass Continuity

$$\frac{\partial u'}{\partial x} + \frac{\partial v'}{\partial y} + \frac{\partial w'}{\partial z} = 0$$

Thermodynamics

$$U\frac{\partial\theta'}{\partial x} + V\frac{\partial\theta'}{\partial y} + w'\frac{\partial\Theta}{\partial z} = 0$$

Following approximations are made:

Cartesian coordinates Shallow atmosphere No rotation Adiabatic + incompressible Hydrostatic Steady state

Linearised : $u = U(z) + u'(x, y, z), u'u' \sim 0$

Momentum

$$U \,\hat{u}ik + V \,\hat{u}il + \hat{w} \frac{\partial U}{\partial z} = -\frac{1}{\rho} \,\hat{p}ik$$
$$U \,\hat{v}ik + V \,\hat{v}il + \hat{w} \frac{\partial V}{\partial z} = -\frac{1}{\rho} \,\hat{p}il$$
$$\frac{\partial \,\hat{p}}{\partial z} = -\rho g$$

Mass Continuity

$$\hat{u}ik + \hat{v}il + \frac{\partial \widehat{w}}{\partial z} = 0$$

Thermodynamics

$$U \,\hat{\theta} ik + V \,\hat{\theta} il + \hat{w} \frac{\partial \Theta}{\partial z} = 0$$

Transform to spectral space:

$$w' \sim \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \widehat{w} \exp(i(kx + ly)) dk dl$$

Momentum

$$U \,\hat{u}ik + V \,\hat{u}il + \hat{w} \frac{\partial U}{\partial z} = -\frac{1}{\rho} \,\hat{p}ik$$
$$U \,\hat{v}ik + V \,\hat{v}il + \hat{w} \frac{\partial V}{\partial z} = -\frac{1}{\rho} \,\hat{p}il$$
$$\frac{\partial \,\hat{p}}{\partial z} = -\rho g$$

Mass Continuity

$$\widehat{u}ik + \widehat{v}il + \frac{\partial \widehat{w}}{\partial z} = 0$$

Thermodynamics

$$U \,\hat{\theta} i k + V \,\hat{\theta} i l + \widehat{w} \frac{\partial \Theta}{\partial z} = 0$$

Transform to spectral space:

$$w' \sim \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \widehat{w} \exp(i(kx+ly)) dk dk$$

Momentum

$$U \,\hat{u}ik + V \,\hat{u}il + \hat{w} \,\frac{\partial U}{\partial z} = -\frac{1}{\rho} \,\hat{p}ik$$
$$U \,\hat{v}ik + V \,\hat{v}il + \hat{w} \,\frac{\partial V}{\partial z} = -\frac{1}{\rho} \,\hat{p}il$$
$$\frac{\partial \,\hat{p}}{\partial z} = -\rho g$$

Mass Continuity

$$\hat{u}ik + \hat{v}il + \frac{\partial \hat{w}}{\partial z} = 0$$

Thermodynamics

$$U \,\hat{\theta} i k + V \,\hat{\theta} i l + \widehat{w} \,\frac{\partial \Theta}{\partial z} = 0$$

Combine equations:

$$\frac{\partial^2 \widehat{w}}{\partial z^2} + \left[\frac{N^2(k^2 + l^2)}{(Uk + Vl)^2}\right]\widehat{w} = 0$$

Solution:

$$\widehat{w} = \widehat{w}_0 \exp(imz), m^2 = \left[\frac{N^2(k^2 + l^2)}{(Uk + Vl)^2}\right]$$

Satellite derived image of temperature perturbations from a gravity wave

Momentum

$$U \,\hat{u}ik + V \,\hat{u}il + \hat{w} \,\frac{\partial U}{\partial z} = -\frac{1}{\rho} \,\hat{p}ik$$
$$U \,\hat{v}ik + V \,\hat{v}il + \hat{w} \,\frac{\partial V}{\partial z} = -\frac{1}{\rho} \,\hat{p}il$$
$$\frac{\partial \,\hat{p}}{\partial z} = -\rho g$$

Mass Continuity

$$\hat{u}ik + \hat{v}il + \frac{\partial \hat{w}}{\partial z} = 0$$

Thermodynamics

$$U \,\hat{\theta} i k + V \,\hat{\theta} i l + \hat{w} \frac{\partial \Theta}{\partial z} = 0$$

Combine equations:

$$\frac{\partial^2 \widehat{w}}{\partial z^2} + \left[\frac{N^2(k^2 + l^2)}{(Uk + Vl)^2}\right]\widehat{w} = 0$$

Solution:

$$\widehat{w} = \widehat{w}_0 \exp(imz), m^2 = \left[\frac{N^2(k^2 + l^2)}{(Uk + Vl)^2}\right]$$

Satellite derived image of temperature perturbations from a gravity wave

Momentum

$$U \,\hat{u}ik + V \,\hat{u}il + \hat{w} \,\frac{\partial U}{\partial z} = -\frac{1}{\rho} \,\hat{p}ik$$
$$U \,\hat{v}ik + V \,\hat{v}il + \hat{w} \,\frac{\partial V}{\partial z} = -\frac{1}{\rho} \,\hat{p}il$$
$$\frac{\partial \,\hat{p}}{\partial z} = -\rho g$$

Combine equations:

$$\frac{\partial^2 \widehat{w}}{\partial z^2} + \left[\frac{N^2(k^2 + l^2)}{(Uk + Vl)^2}\right] \widehat{w} = 0$$

Solution:

$$\widehat{w} = \widehat{w}_0 \exp(imz)$$
, $m^2 = \left[\frac{N^2(k^2 + l^2)}{(Uk + Vl)^2}\right]$

Mass Continuity

$$\hat{u}ik + \hat{v}il + \frac{\partial \hat{w}}{\partial z} = 0$$

Thermodynamics

$$U\,\hat{\theta}ik + V\,\hat{\theta}il + \widehat{w}\frac{\partial\Theta}{\partial z} = 0$$

At surface the flow follows the mountain: $w'(x, y, 0) = \mathbf{U} \cdot \nabla h$ Surface vertical velocity: $\widehat{w}_0 \sim i(Uk + Vl)\widehat{h}$

Momentum

$$U \,\hat{u}ik + V \,\hat{u}il + \hat{w} \frac{\partial U}{\partial z} = -\frac{1}{\rho} \,\hat{p}ik$$

$$U \,\hat{v}ik + V \,\hat{v}il + \hat{w} \frac{\partial V}{\partial z} = -\frac{1}{\rho} \,\hat{p}il$$

$$\frac{\partial \,\hat{p}}{\partial z} = -\rho g$$

$$\frac{d \,(U,V)}{dt} = -\frac{1}{\rho} \,\frac{\partial}{\partial z} \left(\rho \overline{u'w'}, \rho \overline{v'w'}\right)$$

Mass Continuity

$$\hat{u}ik + \hat{v}il + \frac{\partial \hat{w}}{\partial z} = 0$$

Thermodynamics

$$U \,\widehat{\theta} i k + V \,\widehat{\theta} i l + \widehat{w} \,\frac{\partial \Theta}{\partial z} = 0$$

Assume that vertical momentum flux dominates

Expression for the surface momentum flux is given by mountain height

Linear hydrostatic gravity wave surface stress in spectral space:

$$= A^{-1} \rho_0 N_o 4\pi^2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{(k,l)}{\kappa} (U_0 k + V_0 l) \left| \hat{h} \right|^2 dk \, dl$$

 $\tau_{x}, \tau_{y} = \left(\rho_{0}\overline{u'w'}, \rho_{0}\overline{v'w'}\right) = \left(\rho_{0}\overline{\hat{u}\widehat{w}^{*}}, \rho_{0}\overline{\hat{v}\widehat{w}^{*}}\right)$

 $\rho_0 = \text{Density}$ $N_0 = \text{Stability}$ k, l = zonal and meridional wavenumber $K = (k + l)^{\frac{1}{2}}$ A = Area $U_0, V_0 = \text{Surface wind}$

 $|\hat{h}|$ = Spectral transform of mountain height

Mountains are assumed to be ellipses

Linear hydrostatic gravity wave surface stress:

$$\begin{aligned} \tau_{x}, \tau_{y} &= A^{-1} \rho_{0} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (u', v') w' dx dy \\ &= A^{-1} \rho_{0} N_{o} 4 \pi^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{k, l}{K} (U_{0} k + V_{0} l) \left| \hat{h} \right|^{2} dk dk \end{aligned}$$

$|\hat{h}|$ = Fourier transform of surface height

Assume elliptical mountains (Lott and Miller 1997, Phillips 1984):

$$\boldsymbol{\tau} = G\rho N \frac{1}{4a} h_{eff}^2(\boldsymbol{U}\boldsymbol{D})$$

Mountain half-width Effective mountain height Mountain anisotropy

$$\mathbf{h}_{eff} = min\left(h, \frac{U}{NF_c}\right)$$

Parametrizing flow blocking drag

Gravity wave drag:

$$\boldsymbol{\tau} = G\rho N \frac{1}{4a} h_{eff}^2(\boldsymbol{U}\boldsymbol{D})$$

Mountain half-width Effective mountain height Mountain anisotropy

$$\mathbf{h}_{eff} = min\left(h, \frac{U}{NF_c}\right)$$

 $h = n\sigma$ σ = standard deviation of subgrid orography

CECMWF

Parametrizing flow blocking drag

Gravity wave drag:

$$\boldsymbol{\tau} = G\rho N \frac{1}{4a} h_{eff}^2(\boldsymbol{U}\boldsymbol{D})$$

1

Elow blocking drag.

$$\frac{d\boldsymbol{U}}{dt} \sim -C_d \rho |\boldsymbol{U}| \boldsymbol{U} max \left(1 - \frac{1}{r}, 0\right) \frac{1}{a} \left(\frac{Z_{blk} - z}{z + \sigma}\right)^2 \boldsymbol{D}$$

Mountain half-width Effective mountain height Mountain anisotropy Mountain aspect ratio Blocking depth

$$\mathbf{h}_{eff} = min\left(h, \frac{U}{NF_c}\right)$$

$$Z_{blk} = h - h_{eff}$$

 $h = n\sigma$ σ = standard deviation of subgrid orography

Parametrizing flow blocking drag

Gravity wave drag:

$$\boldsymbol{\tau} = G\rho N \frac{1}{4a} h_{eff}^2(\boldsymbol{U}\boldsymbol{D})$$

$$\frac{d\boldsymbol{U}}{dt} \sim -C_d \rho |\boldsymbol{U}| \boldsymbol{U} max \left(1 - \frac{1}{r}, 0\right) \frac{1}{a} \left(\frac{Z_{blk} - z}{z + \sigma}\right)^{\frac{1}{2}} \boldsymbol{D}$$

Mountain half-width Effective mountain height Mountain anisotropy Mountain aspect ratio Blocking depth

$$\mathbf{h}_{eff} = min\left(h, \frac{U}{NF_c}\right)$$

$$Z_{blk} = h - h_{eff}$$

Flow past a bluff body:

1

 $h = n\sigma$ σ = standard deviation of subgrid orography

Parametrizing gravity wave propagation and breaking

Incoming wind forces air over mountain

CECMWF

Parametrizing gravity wave propagation and breaking

$$\eta(z) = \eta(z-1) \sqrt{\frac{\rho(z-1)N(z-1)U(z-1)}{\rho(z)N(z)U(z)}}$$

 $\eta(z)$ = Amplitude at particular height

U = wind in direction of wave vector N = Brunt-Vaisala frequency (stability) $\rho =$ density

A vertically propagating wave is generated

 $\eta(z_0) = h_{eff}$, wave amplitude at surface

Parametrizing gravity wave propagation and breaking

$$\eta(z) = \eta(z-1) \sqrt{\frac{\rho(z-1)N(z-1)U(z-1)}{\rho(z)N(z)U(z)}}$$

 $\eta(z)$ = Amplitude at particular height

U = wind in direction of wave vector N = Brunt-Vaisala frequency (stability) $\rho =$ density

As density decreases with height, the amplitude grows

 $\eta(z_0) = h_{eff}$, wave amplitude at surface
Parametrizing gravity wave propagation and breaking

$$\eta(z) = \eta(z-1) \sqrt{\frac{\rho(z-1)N(z-1)U(z-1)}{\rho(z)N(z)U(z)}}$$

 $\eta(z)$ = Amplitude at particular height

U = wind in direction of wave vector N = Brunt-Vaisala frequency (stability) $\rho =$ density

When Ri
$$\left\{ \frac{1 - \left(\frac{N\eta}{U}\right)}{\left(1 + Ri^{\frac{1}{2}} \left(\frac{N\eta}{U}\right)^{2}\right)^{2}} \right\} > Ri_{crit},$$

 η is reduced

 $\eta(z_0) = h_{eff}$, wave amplitude at surface

Parametrizing gravity wave propagation and breaking

$$\eta(z) = \eta(z-1) \sqrt{\frac{\rho(z-1)N(z-1)U(z-1)}{\rho(z)N(z)U(z)}}$$

 $\eta(z)$ = Amplitude at particular height

U = wind in direction of wave vector N = Brunt-Vaisala frequency (stability) $\rho =$ density

When Ri
$$\begin{cases} \frac{1 - \left(\frac{N\eta}{U}\right)}{\left(1 + Ri^{\frac{1}{2}}\left(\frac{N\eta}{U}\right)^{2}\right)^{2}} \end{cases} > Ri_{crit}, \\ \eta \text{ is reduced} \\ \frac{d(U, V)}{dt} = -\frac{1}{\rho} \frac{\partial}{\partial z} \left(\tau_{x}, \tau_{y}\right) \\ \tau_{x}, \tau_{y}(z) \propto \eta^{2}(z) \end{cases}$$

As density decreases with height, the amplitude grows, until the wave breaks 10 km Height $n(z_0)$

 $\eta(z_0) = h_{eff}$, wave amplitude at surface

Resolved gravity wave drag increases when more mountains are resolved

Resolved GW momentum flux decreases at larger grid-lengths

Plots show: zonal mean zonal gravity wave_{van Niekerk et al} momentum fluxes at 7 km above sea level ⁽²⁰²¹⁾

CECMWF

Resolved GW momentum flux decreases at larger grid-lengths

Parametrized GW momentum flux is almost insensitive to gridlength

Plots show: zonal mean zonal gravity wave_{van Niekerk et al} momentum fluxes at 7 km above sea level ⁽²⁰²¹⁾

Resolved GW momentum flux decreases at larger grid-lengths

Parametrized GW momentum flux is almost insensitive to gridlength Total GW momentum flux is significantly underestimated at large grid-lengths

Plots show: zonal mean zonal gravity wave_{van Niekerk et al} momentum fluxes at 7 km above sea level ⁽²⁰²¹⁾

Plots show: zonal mean zonal wind error relative to analysis at lead time of 5 days van Niekerk et al (2021)

Resolved GW momentum flux decreases at larger grid-lengths

Parametrized GW momentum flux is almost insensitive to gridlength Total GW momentum flux is significantly underestimated at large grid-lengths

Plots show: zonal mean zonal gravity wave_{van Niekerk et al} momentum fluxes at 7 km above sea level ⁽²⁰²¹⁾

Parametrization

Mountains are assumed to be ellipses

Linear hydrostatic gravity wave surface stress:

$$\begin{aligned} \tau_{x}, \tau_{y} &= A^{-1} \rho_{0} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (u', v') w' dx dy \\ &= A^{-1} \rho_{0} N_{o} 4 \pi^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{k l}{K} (U_{0} k + V_{0} l) \left| \hat{h} \right|^{2} dk \, dl \end{aligned}$$

 $\left| \hat{h} \right|$ = Fourier transform of surface height

Assume elliptical mountains (Lott and Miller 1997, Phillips 1984):

 $h_{eff} = min$

 $= G\rho N \frac{1}{\Lambda q}$

Mountain half-width Effective mountain height Mountain anisotropy

Resolved GW momentum flux decreases at larger grid-lengths

Parametrized GW momentum flux increases at larger gridlength Total GW momentum flux is almost constant at different grid-lengths

Plots show: zonal mean zonal gravity wave_{van Niekerk et al} momentum fluxes at 7 km above sea level ⁽²⁰²¹⁾

non-orographic gravity wave drag

> Orographic flow blocking drag

Propagating orographic gravity wave drag

Turbulent orographic drag

Turbulent / roughness drag

Derivation of gravity wave momentum fluxes

Momentum

$$U \,\hat{u}ik + V \,\hat{u}il + \hat{w} \,\frac{\partial U}{\partial z} = -\frac{1}{\rho} \,\hat{p}ik$$
$$U \,\hat{v}ik + V \,\hat{v}il + \hat{w} \,\frac{\partial V}{\partial z} = -\frac{1}{\rho} \,\hat{p}il$$
$$U \,\hat{w}ik + V \,\hat{w}il = -\frac{1}{\rho} \,\frac{\partial \,\hat{p}}{\partial z} - g \,\frac{\hat{\theta}}{\theta_0}$$

Mass Continuity

$$\hat{u}ik + \hat{v}il + \frac{\partial \hat{w}}{\partial z} = 0$$

Thermodynamics

$$U \,\widehat{\theta} ik + V \,\widehat{\theta} il + \widehat{w} \,\frac{\partial \Theta}{\partial z} = 0$$

Combine equations:

$$\frac{\partial^2 \widehat{w}}{\partial z^2} + \left[\frac{N^2(k^2 + l^2)}{(Uk + Vl)^2} - k^2\right] \widehat{w} = 0$$

Non-hydrostatic solution:

$$\widehat{w} = \widehat{w}_0 \exp(imz)$$
, $m^2 = \left[\frac{N^2(k^2 + l^2)}{(Uk + Vl)^2} - k^2\right]$

If $m^2 < 0$, the wave is not propagating

Non-propagating (evanescent) waves

Propagating wave

Plots show the streamline displacement induced by the wave

CECMWF

Non-propagating (evanescent) waves

Turbulent orographic form drag

In evanescent waves, the near-surface turbulent stress causes a deepening of the boundary layer on the leeside of the hill

This deepening leads to an asymmetry in the flow over the mountain, which results in a drag on the atmosphere – termed turbulent orographic form drag

EEFCMWF

Non-propagating wave

Turbulent surface stress for one mountain:

 $\tau_{TOFD} = \rho 2\alpha\beta C_{TOFD} |\nabla \cdot h|^2 |U|^2$

Turbulent surface stress for one mountain:

 $\tau_{TOFD} = \rho 2\alpha\beta C_{TOFD} |\nabla \cdot h|^2 |U|^2$

Vertically distributed drag for one mountain:

$$\frac{\partial \boldsymbol{U}}{\partial t}_{TOFD} = -\rho 2\alpha\beta C_{TOFD} |\nabla \cdot h|^2 |\boldsymbol{U}| \boldsymbol{U} exp\left(-\frac{\boldsymbol{Z}}{\boldsymbol{l}}\right)$$

CECMWF

Turbulent surface stress for one mountain:

 $\tau_{TOFD} = \rho 2\alpha\beta C_{TOFD} |\nabla \cdot h|^2 |U|^2$

Vertically distributed drag for one mountain:

$$\frac{\partial \boldsymbol{U}}{\partial t_{TOFD}} = -\rho 2\alpha\beta C_{TOFD} |\nabla \cdot \boldsymbol{h}|^2 |\boldsymbol{U}| \boldsymbol{U} exp\left(-\frac{\boldsymbol{Z}}{\boldsymbol{l}}\right)$$

Drag from several mountain waves:

$$\frac{\partial \boldsymbol{U}}{\partial t_{TOFD}} = -\rho 2\alpha\beta C_{TOFD} |\boldsymbol{U}| \boldsymbol{U} \int_{k_0}^{\infty} k^2 |\hat{\boldsymbol{h}}|^2 \exp\left(-\frac{zk}{2}\right) dk$$

 $|\hat{h}|$ = Spectral transform of mountain height

ECMWF

Turbulent surface stress for one mountain:

 $\tau_{TOFD} = \rho 2\alpha\beta C_{TOFD} |\nabla \cdot h|^2 |U|^2$

Vertically distributed drag for one mountain:

$$\frac{\partial \boldsymbol{U}}{\partial t}_{TOFD} = -\rho 2\alpha\beta C_{TOFD} |\nabla \cdot \boldsymbol{h}|^2 |\boldsymbol{U}| \boldsymbol{U} exp\left(-\frac{\boldsymbol{Z}}{\boldsymbol{l}}\right)$$

Drag from several mountain waves:

$$\frac{\partial \boldsymbol{U}}{\partial t_{TOFD}} = -\rho 2\alpha\beta C_{TOFD} |\boldsymbol{U}| \boldsymbol{U} \int_{k_0}^{\infty} k^2 |\hat{\boldsymbol{h}}|^2 \exp\left(-\frac{zk}{2}\right) dk$$

 $|\hat{h}|$ = Spectral transform of mountain height

CECMWF

Power spectrum of orography from 100m data

Turbulent surface stress for one mountain:

 $\tau_{TOFD} = \rho 2\alpha\beta C_{TOFD} |\nabla \cdot h|^2 |U|^2$

Vertically distributed drag for one mountain:

$$\frac{\partial \boldsymbol{U}}{\partial t_{TOFD}} = -\rho 2\alpha\beta C_{TOFD} |\nabla \cdot \boldsymbol{h}|^2 |\boldsymbol{U}| \boldsymbol{U} exp\left(-\frac{\boldsymbol{Z}}{\boldsymbol{l}}\right)$$

Drag from several mountain waves:

$$\frac{\partial \boldsymbol{U}}{\partial t_{TOFD}} = -\rho 2\alpha\beta C_{TOFD} |\boldsymbol{U}| \boldsymbol{U} \int_{k_0}^{\infty} k^2 |\hat{\boldsymbol{h}}|^2 \exp\left(-\frac{zk}{2}\right) dk$$

Power spectrum of orography from 100m data

 $|\hat{h}|$ = Spectral transform of mountain height

Turbulent surface stress for one mountain:

 $\tau_{TOFD} = \rho 2\alpha\beta C_{TOFD} |\nabla \cdot h|^2 |U|^2$

Vertically distributed drag for one mountain:

$$\frac{\partial \boldsymbol{U}}{\partial t_{TOFD}} = -\rho 2\alpha\beta C_{TOFD} |\nabla \cdot \boldsymbol{h}|^2 |\boldsymbol{U}| \boldsymbol{U} exp\left(-\frac{z}{l}\right)$$

Drag from several mountain waves:

$$\frac{\partial \boldsymbol{U}}{\partial t}_{TOFD} = -\rho 2\alpha\beta C_{TOFD} |\boldsymbol{U}|\boldsymbol{U}2.109 \exp\left(-\left(\frac{z}{1500}\right)^{1.5}\right) a_2 z^{-1.2}$$

Power spectrum of orography from 100m data

 $\left| \hat{h} \right|$ = Spectral transform of mountain height

ECMWF

non-orographic gravity wave drag

> Orographic flow blocking drag

Propagating orographic gravity wave drag

Turbulent / roughness drag

Turbulent orographic

drag

Non-orographic gravity wave drag

Brightness Temperature Perturbations from AIRS satellite at ~ 40 km ASL

AIRS | 2019-01-01, 13:30 LT

'Non-orographic' gravity waves are all gravity waves not generated by mountains

They can be generated from:

- front\jet instabilities
- convection
 - secondary gravity wave breaking

They are typically smaller amplitude and, therefore, can reach very high up in the atmosphere before breaking

They are not 'steady' (as with mountain waves) and so their phase varies in space and time

Non-orographic gravity wave drag - convection

Heating is imposed near the surface \rightarrow leads to vertical displacement

In stable atmosphere, this generates a wave, much like flow over mountains

Some of the waves begin to break and generate turbulence where their speed == the background wind speed (thin blue line)

This is a 'critical line' where wave 'drags' the flow

Momentum

$$\frac{\partial u'}{\partial t} + U \frac{\partial u'}{\partial x} + V \frac{\partial u'}{\partial y} + w' \frac{\partial U}{\partial z} = -\frac{1}{\rho} \frac{\partial p'}{\partial x}$$
$$\frac{\partial v'}{\partial t} + U \frac{\partial v'}{\partial x} + V \frac{\partial v'}{\partial y} + w' \frac{\partial V}{\partial z} = -\frac{1}{\rho} \frac{\partial p'}{\partial y}$$
$$\frac{\partial p'}{\partial z} = -\rho g$$

Mass Continuity

$$\frac{\partial u'}{\partial x} + \frac{\partial v'}{\partial y} + \frac{\partial w'}{\partial z} = 0$$

Thermodynamics

$$\frac{\partial \theta'}{\partial t} + U \frac{\partial \theta'}{\partial x} + V \frac{\partial \theta'}{\partial y} + w' \frac{\partial \Theta}{\partial z} = 0$$

Following approximations are made:

Cartesian coordinates Shallow atmosphere No rotation Adiabatic + incompressible Hydrostatic Not steady state

Linearised : $u = U(z) + u'(x, y, z, t), u'u' \sim 0$

Momentum

CECMWF

Momentum

$$\begin{aligned} -\hat{u}i\omega + U\,\hat{u}ik + V\,\hat{u}il + \hat{w}\frac{\partial U}{\partial z} &= -\frac{1}{\rho}\,\hat{p}ik \\ -\hat{v}i\omega + U\,\hat{v}ik + V\,\hat{v}il + \hat{w}\frac{\partial V}{\partial z} &= -\frac{1}{\rho}\,\hat{p}il \\ \frac{\partial\,\hat{p}}{\partial z} &= -\rho g \end{aligned}$$

Combine equations:

$$\frac{\partial^2 \widehat{w}}{\partial z^2} + \left[\frac{N^2(k^2 + l^2)}{(\omega - Uk + Vl)^2}\right]\widehat{w} = 0$$

Solution:

$$\widehat{w} = \widehat{w}_0 \exp(imz), m^2 = \left[\frac{N^2(k^2 + l^2)}{(\omega - Uk + Vl)^2}\right]$$

Mass Continuity

$$\hat{u}ik + \hat{v}il + \frac{\partial \hat{w}}{\partial z} = 0$$

Thermodynamics

$$-\hat{\theta}i\omega + U\,\hat{\theta}ik + V\,\hat{\theta}il + \hat{w}\frac{\partial\Theta}{\partial z} = 0$$

Momentum

$$\begin{aligned} -\hat{u}i\omega + U\,\hat{u}ik + V\,\hat{u}il + \hat{w}\frac{\partial U}{\partial z} &= -\frac{1}{\rho}\,\hat{p}ik\\ -\hat{v}i\omega + U\,\hat{v}ik + V\,\hat{v}il + \hat{w}\frac{\partial V}{\partial z} &= -\frac{1}{\rho}\,\hat{p}il\\ \frac{\partial\,\hat{p}}{\partial z} &= -\rho g \end{aligned}$$

Combine equations:

$$\frac{\partial^2 \widehat{w}}{\partial z^2} + \left[\frac{N^2(k^2 + l^2)}{(\omega - Uk + Vl)^2}\right]\widehat{w} = 0$$

Solution:

$$\widehat{w} = \widehat{w}_0 \exp(imz), m^2 = \left[\frac{N^2(k^2 + l^2)}{(\omega - Uk + Vl)^2}\right]$$

Mass Continuity

$$\widehat{u}ik + \widehat{v}il + \frac{\partial \widehat{w}}{\partial z} = 0$$

Thermodynamics

$$-\hat{\theta}i\omega + U\,\hat{\theta}ik + V\,\hat{\theta}il + \hat{w}\frac{\partial\Theta}{\partial z} = 0$$

There is not a simple surface boundary condition (as with mountains) for this problem

We do not know the nature of the sources well enough

Empirical relationship between the momentum fluxes and vertical wavenumber is assumed

Relationship is assumed to hold for every k and ω

$$m^{2} = \left[\frac{N^{2}(k^{2} + l^{2})}{(\omega - Uk + Vl)^{2}}\right]$$

CECMWF

Empirical relationship between the momentum fluxes and vertical wavenumber is assumed

Relationship is assumed to hold for every k and ω

$$m^{2} = \left[\frac{N^{2}(k^{2} + l^{2})}{(\omega - Uk + Vl)^{2}}\right]$$

Empirical relationship between the momentum fluxes and vertical wavenumber is assumed

Relationship is assumed to hold for every k and ω

$$m^{2} = \left[\frac{N^{2}(k^{2} + l^{2})}{(\omega - Uk + Vl)^{2}}\right]$$

Scheme then uses discretely 'binned' values of kand ω , and solves for these individually

CECMWF

Empirical relationship between the momentum fluxes and vertical wavenumber is assumed

Relationship is assumed to hold for every k and ω

$$m^2 = \left[\frac{N^2(k^2 + l^2)}{(\omega - Uk + Vl)^2}\right]$$

Scheme then uses discretely 'binned' values of kand ω , and solves for these individually

Waves are then saturated (only at large m) using:

$$\tau(z,m,k,\omega) < \tau_{sat}(z,m,k,\omega)$$

$$\tau(z,m,k,\omega) == \tau_{sat}(z,m,k,\omega)$$

Total drag is given by the sum of fluxes over bins:

$$\frac{d |U|}{dt} = -\frac{1}{\rho} \frac{\partial}{\partial z} \left(\sum_{\omega} \sum_{-k} \tau(z, m, k, \omega) \right)$$

Empirical relationship between the momentum fluxes and vertical wavenumber is assumed

Relationship is assumed to hold for every k and ω

$$m^2 = \left[\frac{N^2(k^2 + l^2)}{(\omega - Uk + Vl)^2}\right]$$

Scheme then uses discretely 'binned' values of kand ω , and solves for these individually

Waves are then saturated (only at large m) using:

$$\tau(z,m,k,\omega) < \tau_{sat}(z,m,k,\omega)$$

$$\tau(z, m, k, \omega) == \tau_{sat}(z, m, k, \omega)$$

Total drag is given by the sum of fluxes over bins:

$$\frac{d |U|}{dt} = -\frac{1}{\rho} \frac{\partial}{\partial z} \left(\sum_{\omega} \sum_{-k} \tau(z, m, k, \omega) \right)$$

Empirical relationship between the momentum fluxes and vertical wavenumber is assumed

Relationship is assumed to hold for every k and ω

$$m^{2} = \left[\frac{N^{2}(k^{2} + l^{2})}{(\omega - Uk + Vl)^{2}}\right]$$

Scheme then uses discretely 'binned' values of kand ω , and solves for these individually

Waves are then saturated (only at large m) using:

$$\tau(z,m,k,\omega) < \tau_{sat}(z,m,k,\omega)$$

$$\tau(z, m, k, \omega) == \tau_{sat}(z, m, k, \omega)$$
Getting the QBO right

Reduced diffusion improves model winds in the QBO positive phase

CECMWF

Getting the QBO right

Reduced diffusion improves model winds in the QBO positive phase but does not make things better at the longer range

Tuning non-orographic gravity wave drag

Increased non-orographic gravity wave drag makes the wind evolution better

Tuning non-orographic gravity wave drag

Increased non-orographic gravity wave drag makes the wind evolution better – but the winds transition to negative too quickly

Tuning non-orographic gravity wave drag

Fine tuning the increased gravity wave drag gives better transition to negative QBO phase

Plot shows 50 hPa zonal winds averaged between 5S – 5N Seasonal hindcasts run with the ECMWF IFS, 7 months long

Summary of orographic drag and gravity wave drag

- Orographic gravity wave drag:
 - These are waves generated by flow over mountains and lead to drag in the upper atmosphere
 - In the model, the mountains are assumed to be ellipses (not good for resolution sensitivity)
- Orographic flow blocking:
 - Flow blocking occurs when the surface wind is weak or the stability is very high
 - This drag occurs near the surface, around the mountains
- Turbulent orographic form drag:
 - Occurs when there is turbulent stress near mountains that generate non-propgating waves
 - Assumed to be from small-scale mountain < 5 km wide
- Non-orographic gravity wave drag:
 - This is drag from all gravity wave sources that are not from mountains
 - The source of these waves are assumed to follow an empirical relationship between vertical wavenumber (m) and momentum flux

ECMWF