Planetary Boundary Layer 2

- **Fundamental concepts**
- Annelize van Niekerk, Irina Sandu, Anton Beljaars
- Annelize.vanNiekerk@ecmwf.int

Contents

- Local eddy diffusion (k-profile)
- Surface layer similarity theory
- Roughness length
- Outer layer local eddy diffusion
- Non-local mass flux in convective PBLs

Set of equations to solve in the model

Thermodynamics

Moisture

 $\left| \frac{\partial \overline{\theta}}{\partial t} = -\frac{1}{\rho} \right| \nabla \cdot \left(\rho \overline{\theta} \overline{u} \right) + \frac{\partial \rho \overline{\theta' w'}}{dz} \right| + S_{\theta}$

 $\frac{\partial \overline{q}}{\partial t} = -\frac{1}{\rho} \left[\nabla \cdot \left(\rho \overline{q} \overline{u} \right) + \frac{\partial \rho q' w'}{dz} \right] + S_q$

Large scale terms – resolved by model

Small scale turbulent fluxes – must be parametrized

Sources and sinks (e.g. heating and cooling from radiation)

What do we need from a BL turbulence parametrization?

- Provide turbulent fluxes of heat, momentum, moisture (and tracers) between the surface and the upper atmosphere
- Provide turbulent mixing throughout the entire atmosphere – the mixed layer, the cloud layer and the stratosphere
- Account for differences in stability, surface properties and clouds
- Provide profiles of winds and temperatures at the surface, where the model does not resolve in the vertical

- Model does not resolve surface layer
- There are strong gradients and is where people live
- Requires diagnosis of profiles below 10m

Momentum

$$\frac{\partial \overline{u}}{\partial t} = -\frac{1}{\rho} \left[\frac{\partial \rho \overline{u'w'}}{dz} \right]$$

Thermodynamics

$$\frac{\partial \overline{\theta}}{\partial t} = -\frac{1}{\rho} \left[\frac{\partial \rho \overline{\theta' w'}}{dz} \right]$$

Moisture

$$\frac{\partial \overline{q}}{\partial t} = -\frac{1}{\rho} \left[\frac{\partial \rho \overline{q' w'}}{dz} \right]$$

Momentum

$$\frac{\partial \overline{u}}{\partial t} = -\frac{1}{\rho} \left[\frac{\partial \rho \overline{u'w'}}{dz} \right] \sim -\frac{1}{\rho} \frac{\partial}{dz} \left(-\rho K_M \frac{\partial \overline{u}}{\partial z} \right)$$

Thermodynamics

$$\frac{\partial \overline{\theta}}{\partial t} = -\frac{1}{\rho} \left[\frac{\partial \rho \overline{\theta' w'}}{dz} \right] \sim -\frac{1}{\rho} \frac{\partial}{dz} \left(-\rho K_H \frac{\partial \overline{\theta}}{\partial z} \right)$$

 K_M , K_H and K_q are the exchange coefficients of momentum, heat and moisture

Their magnitude determines the transfer of these conserved quantities by turbulent eddies

Moisture
$$\frac{\partial \overline{q}}{\partial t} = -\frac{1}{\rho} \left[\frac{\partial \rho \overline{q'w'}}{dz} \right] \sim -\frac{1}{\rho} \frac{\partial}{dz} \left(-\rho K_q \frac{\partial \overline{q}}{\partial z} \right)$$

Momentum

$$\frac{\partial \overline{u}}{\partial t} = -\frac{1}{\rho} \left[\frac{\partial \rho \overline{u'w'}}{dz} \right] \sim -\frac{1}{\rho} \frac{\partial}{dz} \left(-\rho K_M \frac{\partial \overline{u}}{\partial z} \right)$$

Thermodynamics

$$\frac{\partial \overline{\theta}}{\partial t} = -\frac{1}{\rho} \left[\frac{\partial \rho \overline{\theta' w'}}{dz} \right] \sim -\frac{1}{\rho} \frac{\partial}{dz} \left(-\rho K_H \frac{\partial \overline{\theta}}{\partial z} \right)$$

 K_M , K_H and K_q are the exchange coefficients of momentum, heat and moisture

Their magnitude determines the transfer of these conserved quantities by turbulent eddies

Moisture
$$\frac{\partial \overline{q}}{\partial t} = -\frac{1}{\rho} \left[\frac{\partial \rho \overline{q'w'}}{dz} \right] \sim -\frac{1}{\rho} \frac{\partial}{dz} \left(-\rho K_q \frac{\partial \overline{q}}{\partial z} \right)$$

Generally assumed that diffusion of heat == diffusion of moisture

$$K_H = K_q$$

Momentum

$$\frac{\partial \overline{u}}{\partial t} = -\frac{1}{\rho} \left[\frac{\partial \rho \overline{u'w'}}{dz} \right] \sim -\frac{1}{\rho} \frac{\partial}{dz} \left(-\rho K_M \frac{\partial \overline{u}}{\partial z} \right)$$

Thermodynamics

$$\frac{\partial \overline{\theta}}{\partial t} = -\frac{1}{\rho} \left[\frac{\partial \rho \overline{\theta' w'}}{dz} \right] \sim -\frac{1}{\rho} \frac{\partial}{dz} \left(-\rho K_H \frac{\partial \overline{\theta}}{\partial z} \right)$$

 K_M , K_H and K_q are the exchange coefficients of momentum, heat and moisture

Their magnitude determines the transfer of these conserved quantities by turbulent eddies

Momentum
$$\overline{u'w'} \sim -K_M \frac{\partial \overline{u}}{\partial z}$$

Thermodynamics

$$\overline{\theta'w'} \sim -K_H \frac{\partial \overline{\theta}}{\partial z}$$

 K_M , K_H and K_q are the exchange coefficients of momentum, heat and moisture

Their magnitude determines the transfer of these conserved quantities by turbulent eddies

Momentum

$$\overline{u'w'} \sim -K_M \frac{\partial \overline{u}}{\partial z}$$

$\frac{\partial \overline{u}}{\partial z}, \frac{\partial \overline{v}}{\partial z} > 0$ $\frac{u'w' < 0}{u' \sim -l \frac{\partial \overline{u}}{\partial z}}$ $w' \sim l \left| \frac{\partial \overline{u}}{\partial z} \right|$

Thermodynamics

$$\overline{\theta'w'} \sim -K_H \frac{\partial \overline{\theta}}{\partial z}$$

Wind / temperature gradient with turbulent eddies will generate mixing

Mixing occurs over a certain lengthscale l, related to size of eddies

Momentum

$$\overline{u'w'} \sim -K_M \frac{\partial \overline{u}}{\partial z} = -l^2 \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{u}}{\partial z}$$

Wind / temperature gradient with turbulent eddies will generate mixing

Mixing occurs over a certain lengthscale l, related to size of eddies

This lengthscale can be used to determine the exchange coefficients

Thermodynamics

$$\overline{\theta'w'} \sim -K_H \frac{\partial \overline{\theta}}{\partial z} = -l^2 \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{\theta}}{\partial z}$$

'Local' turbulence closure at the surface

What is *l* at the surface?

Momentum

$$\overline{u'w'} \sim -K_M \frac{\partial \overline{u}}{\partial z} = -l^2 \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{u}}{\partial z}$$

Thermodynamics

$$\overline{\theta'w'} \sim -K_H \frac{\partial \overline{\theta}}{\partial z} = -l^2 \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{\theta}}{\partial z}$$

What is *l* at the surface?

- determined from observations

What is *l* at the surface?

- determined from observations

Assume that fluxes are constant with height

$$\overline{u'w'} \sim -K_M \frac{\partial \overline{u}}{\partial z} = -\kappa^2 z^2 \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{u}}{\partial z}$$

$$\overline{\theta'w'} \sim -K_H \frac{\partial \overline{\theta}}{\partial z} = -\kappa^2 z^2 \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{\theta}}{\partial z}$$

Near surface, fluxes are assumed constant with height $(\overline{u'w'})_z = (\overline{u'w'})_s$:

Assume that fluxes are constant with height

Thermodynamics

$$\overline{\theta'w'} \sim -K_H \frac{\partial \overline{\theta}}{\partial z} = -\kappa^2 z^2 \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{\theta}}{\partial z}$$

Near surface, fluxes are assumed constant with height $(\overline{u'w'})_z = (\overline{u'w'})_s$:

$$\left(\overline{u'w'}\right)_z = -\kappa^2 z^2 \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{u}}{\partial z} = u_*^2$$

$$\left(\overline{\theta'w'}\right)_{z} = -\kappa^{2}z^{2} \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{\theta}}{\partial z} = u_{*}\theta_{*}$$

Where $u_* = \sqrt{(\overline{u'w'})_s} = \kappa z \left| \frac{\partial \overline{u}}{\partial z} \right|$ is the surface frictional velocity

 θ_* is the temperature scaling, similarly, q_* is the moisture scaling

 $\frac{\partial \overline{u}}{\partial z}, \frac{\partial \overline{v}}{\partial z} > 0$

 $\frac{\overline{u'w'} < 0}{u' \sim -\kappa z} \frac{\partial \overline{u}}{\partial z}$

 $w' \sim \kappa z \left| \frac{\partial \overline{u}}{\partial z} \right|$

Momentum

$$\overline{u'w'} = u_*^2 = -\kappa^2 z^2 \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{u}}{\partial z}$$

Thermodynamics

$$\overline{\theta'w'} = \theta_* u_* = -\kappa^2 z^2 \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{\theta}}{\partial z}$$

Where
$$u_* = \sqrt{\left(\overline{u'w'}\right)_s} = \kappa z \left|\frac{\partial \overline{u}}{\partial z}\right|$$
 is the surface frictional velocity

 θ_* is the temperature scaling, similarly, q_* is the moisture scaling

CECMWF

Momentum

$$\kappa z \frac{\partial \overline{u}}{\partial z} = u_*$$

Thermodynamics

$$\kappa z \frac{\partial \overline{\theta}}{\partial z} = \theta_*$$

Where
$$u_* = \sqrt{\left(\overline{u'w'}\right)_s} = \kappa z \left|\frac{\partial \overline{u}}{\partial z}\right|$$
 is the surface frictional velocity

 θ_* is the temperature scaling, similarly, q_* is the moisture scaling

CECMWF

Thermodynamics

Where
$$u_* = \sqrt{\left(\overline{u'w'}\right)_s} = \kappa z \left|\frac{\partial \overline{u}}{\partial z}\right|$$
 is

the surface frictional velocity

 θ_* is the temperature scaling, similarly, q_* is the moisture scaling

Where
$$u_* = \sqrt{\left(\overline{u'w'}\right)_s} = \kappa z \left|\frac{\partial \overline{u}}{\partial z}\right|$$
 is

the surface frictional velocity

 θ_* is the temperature scaling, similarly, q_* is the moisture scaling

Thermodynamics

Where
$$u_* = \sqrt{\left(\overline{u'w'}\right)_s} = \kappa z \left|\frac{\partial \overline{u}}{\partial z}\right|$$
 is

the surface frictional velocity

 θ_* is the temperature scaling, similarly, q_* is the moisture scaling

Thermodynamics

'Local' turbulence closure at the surface – adding stability dependence

Adding stability dependence

Wind Speed \overline{U}

Adding stability dependence

Thermodynamics

L = Obukhov length (will come back to this)

Thermodynamics

Relationship between $\phi_M(\zeta)$, $\phi_H(\zeta)$ and ζ measured empirically and then integrated vertically

To do this, requires a change of variable:

$$d\zeta = \frac{1}{L}dz$$

Thermodynamics

Relationship between $\phi_M(\zeta)$, $\phi_H(\zeta)$ and ζ measured empirically and then integrated vertically

To do this, requires a change of variable:

$$d\zeta = \frac{1}{L}dz$$

Thermodynamics

Relationship between $\phi_M(\zeta)$, $\phi_H(\zeta)$ and ζ measured empirically and then integrated vertically

 $\Psi_{\mathrm{H}}, \Psi_{\mathrm{M}}$ are integrals of $\phi_{\scriptscriptstyle M}(\zeta)$

What is the Obukhov-length?

- Derived from scaling arguments Reduces degrees of freedom so that 'universal' relations (they work for all situations) can be derived
- $\zeta > 0$ Stable
- $\zeta < 0$ Unstable

What is the Obukhov-length?

- Derived from scaling arguments Reduces degrees of freedom so that 'universal' relations (they work for all situations) can be derived
- Height above the surface at which: buoyant production > shear production of turbulence

Buoyancy production :
$$\frac{g}{\theta} \overline{\theta' w'} = \frac{g}{\theta} \theta_* u_*$$

 \div
Shear production: $-\overline{u'w'} \frac{\partial u}{\partial z} = u_*^2 \frac{\partial u}{\partial z}$

- $\zeta > 0$ Stable
- $\zeta < 0$ Unstable

What is the Obukhov-length?

- Derived from scaling arguments Reduces degrees of freedom so that 'universal' relations (they work for all situations) can be derived
- Height above the surface at which: buoyant production > shear production of turbulence

Buoyancy production :
$$\frac{g}{\theta} \overline{\theta' w'} = \frac{g}{\theta} \theta_* u_*$$

 \div
Shear production: $-\overline{u'w'} \frac{\partial u}{\partial z} = u_*^2 \frac{\partial u}{\partial z}$

- $\zeta > 0$ Stable
- $\zeta < 0$ Unstable

$$\zeta = \frac{z}{L} = \frac{g}{\theta} \frac{\theta_* u_*}{u_*^2 \frac{\partial u}{\partial z}} = -\frac{\frac{g}{\theta} \theta_* \kappa z}{u_*^2}$$

Made use of :
$$\frac{\partial u}{\partial z} = \frac{u_*}{\kappa z}$$

Thermodynamics

Recall that: $\overline{u'w'} = u_*^2$ $\overline{\theta'w'} = \theta_*u_*$ Relationship between $\phi_M(\zeta)$, $\phi_H(\zeta)$ and ζ measured empirically and then integrated vertically

 $\Psi_{
m H}$, $\Psi_{
m M}$ are integrals of $\phi_{\scriptscriptstyle M}(\zeta)$

This means we can get surface fluxes

Momentum

$$\rho \overline{u'w'} = \rho u_*^2 = \rho C_M |\overline{u_z}|^2$$

Thermodynamics

$$\rho \overline{\theta' w'} = \rho u_* \theta_* = \rho C_H (\overline{\theta_z} - \overline{\theta_s}) |\overline{u_z}|$$

Surface exchange coefficient for heat:

$$C_{\rm H} = \frac{\kappa^2}{\left[\log\left(\frac{z+z_{0m}}{z_{0m}}\right) - \Psi_{\rm M}\left(\frac{z+z_{0m}}{L}\right)\right] \left[\log\left(\frac{z+z_{0m}}{z_{0H}}\right) - \Psi_{\rm H}\left(\frac{z+z_{0m}}{L}\right)\right]}$$
Surface exchange coefficient for momentum:

$$C_{\rm M} = \frac{\kappa^2}{\left[\log\left(\frac{z+z_{0m}}{z_{0m}}\right) - \Psi_{\rm M}\left(\frac{z+z_{0m}}{L}\right)\right]^2}$$

This means we can get surface fluxes **but**...

Momentum

$$\rho \overline{u'w'} = \rho u_*^2 = \rho C_M |\overline{u_z}|^2$$

Thermodynamics

$$\rho \overline{\theta' w'} = \rho u_* \theta_* = \rho C_H (\overline{\theta_z} - \overline{\theta_s}) |\overline{u_z}|$$

Surface exchange coefficient for heat:

$$C_{\rm H} = \frac{\kappa^2}{\left[\log\left(\frac{z+z_{0m}}{z_{0m}}\right) - \Psi_{\rm M}\left(\frac{z+z_{0m}}{L}\right)\right] \left[\log\left(\frac{z+z_{0m}}{z_{0H}}\right) - \Psi_{\rm H}\left(\frac{z+z_{0m}}{L}\right)\right]}$$
Surface exchange coefficient for momentum:
$$C_{\rm M} = \frac{\kappa^2}{\left[\log\left(\frac{z+z_{0m}}{z_{0m}}\right) - \Psi_{\rm M}\left(\frac{z+z_{0m}}{L}\right)\right]^2}$$

Exchange coefficients depend on $\zeta = \frac{z+z_{0m}}{L}$, which itself depends on surface fluxes

1. Start with relationship between bulk Richardson number and z/L:

$$Ri_{b} = \frac{g}{\overline{\theta_{z}}} \frac{\left(\overline{\theta_{z}} - \overline{\theta_{s}}\right)z}{|\overline{u_{z}}|^{2}} = z\frac{g}{\overline{\theta_{z}}}\frac{\theta_{*}}{u_{*}^{2}}\frac{C_{M}^{\frac{3}{2}}}{C_{H}} = \frac{z}{L} \frac{\left[\log\left(\frac{z + z_{0m}}{z_{0h}}\right) - \Psi_{H}\left(\frac{z + z_{0m}}{L}\right)\right]}{\left[\log\left(\frac{z + z_{0m}}{z_{0m}}\right) - \Psi_{M}\left(\frac{z + z_{0m}}{L}\right)\right]^{2}}$$

1. Start with relationship between bulk Richardson number and z/L:

$$Ri_{b} = \frac{g}{\overline{\theta_{z}}} \frac{\left(\overline{\theta_{z}} - \overline{\theta_{s}}\right)z}{|\overline{u_{z}}|^{2}} = z\frac{g}{\overline{\theta_{z}}}\frac{\theta_{*}}{u_{*}^{2}}\frac{C_{M}^{\frac{3}{2}}}{C_{H}} = \frac{z}{L} \frac{\left[\log\left(\frac{z + z_{0m}}{z_{0h}}\right) - \Psi_{H}\left(\frac{z + z_{0m}}{L}\right)\right]}{\left[\log\left(\frac{z + z_{0m}}{z_{0m}}\right) - \Psi_{M}\left(\frac{z + z_{0m}}{L}\right)\right]^{2}}$$

- 2. Compute Ri_b from model fields and solve for $\frac{Z}{L}$ by either:
 - Iteration
 - Using empirically fitted functional relationship between $\frac{z}{r}$ and Ri_b
 - Look-up table

1. Start with relationship between bulk Richardson number and z/L:

$$Ri_{b} = \frac{g}{\overline{\theta_{z}}} \frac{\left(\overline{\theta_{z}} - \overline{\theta_{s}}\right)z}{|\overline{u_{z}}|^{2}} = z\frac{g}{\overline{\theta_{z}}}\frac{\theta_{*}}{u_{*}^{2}}\frac{C_{M}^{\frac{3}{2}}}{C_{H}} = \frac{z}{L} \frac{\left[\log\left(\frac{z + z_{0m}}{z_{0h}}\right) - \Psi_{H}\left(\frac{z + z_{0m}}{L}\right)\right]}{\left[\log\left(\frac{z + z_{0m}}{z_{0m}}\right) - \Psi_{M}\left(\frac{z + z_{0m}}{L}\right)\right]^{2}}$$

- 2. Compute Ri_b from model fields and solve for $\frac{Z}{L}$ by either:
 - Iteration
 - Using empirically fitted functional relationship between $\frac{z}{r}$ and Ri_b
 - Look-up table
- 3. Compute the surface exchange coefficients C_H and C_M

CECMWF

1. Start with relationship between bulk Richardson number and z/L:

$$Ri_{b} = \frac{g}{\overline{\theta_{z}}} \frac{\left(\overline{\theta_{z}} - \overline{\theta_{s}}\right)z}{|\overline{u_{z}}|^{2}} = z\frac{g}{\overline{\theta_{z}}}\frac{\theta_{*}}{u_{*}^{2}}\frac{C_{M}^{\frac{3}{2}}}{C_{H}} = \frac{z}{L} \frac{\left[\log\left(\frac{z + z_{0m}}{z_{0h}}\right) - \Psi_{H}\left(\frac{z + z_{0m}}{L}\right)\right]}{\left[\log\left(\frac{z + z_{0m}}{z_{0m}}\right) - \Psi_{M}\left(\frac{z + z_{0m}}{L}\right)\right]^{2}}$$

- 2. Compute Ri_b from model fields and solve for $\frac{Z}{L}$ by either:
 - Iteration
 - Using empirically fitted functional relationship between $\frac{z}{r}$ and Ri_b
 - Look-up table
- 3. Compute the surface exchange coefficients C_H and C_M
- 4. Now you have a boundary condition for your atmospheric turbulent exchange! Yay!

1. Start with relationship between bulk Richardson number and z/L:

$$Ri_{b} = \frac{g}{\overline{\theta_{z}}} \frac{\left(\overline{\theta_{z}} - \overline{\theta_{s}}\right)z}{|\overline{u_{z}}|^{2}} = z\frac{g}{\overline{\theta_{z}}}\frac{\theta_{*}}{u_{*}^{2}}\frac{C_{M}^{\frac{3}{2}}}{C_{H}} = \frac{z}{L} \frac{\left[\log\left(\frac{z + z_{0m}}{z_{0h}}\right) - \Psi_{H}\left(\frac{z + z_{0m}}{L}\right)\right]}{\left[\log\left(\frac{z + z_{0m}}{z_{0m}}\right) - \Psi_{M}\left(\frac{z + z_{0m}}{L}\right)\right]^{2}}$$

- 2. Compute Ri_b from model fields and solve for $\frac{Z}{L}$ by either:
 - Iteration
 - Using empirically fitted functional relationship between $\frac{2}{r}$ and Ri_b
 - Look-up table
- 3. Compute the surface exchange coefficients C_H and C_M
- 4. Now you have a boundary condition for your atmospheric turbulent exchange! Yay!
- 5. AND we can determine profiles of winds, temperature and humidity near the surface

CECMWF

Summary of Monin-Obukhov surface layer similarity theory

- The Obukhov-length is a measure of surface layer stability and can be thought of as the ratio of buoyancy / shear production of turbulence
- It is assumed that turbulent fluxes do not vary across the surface layer
- 'Universal' functions that relate the Obukhov length (stability) to the vertical profiles of conserved quantities (e.g. wind and temperature) in the surface layer can be derived from observations
- This is useful because we can relate Richardson number to z/L and get profiles and surface fluxes

Where
$$u_* = \sqrt{\left(\overline{u'w'}\right)_s} = \kappa z \left|\frac{\partial \overline{u}}{\partial z}\right|$$
 is

the surface frictional velocity

 θ_* is the temperature scaling, similarly, q_* is the moisture scaling

Thermodynamics

- Roughness length for momentum z_{0M} is not the same as for heat z_{0H}
- z_{0M} and z_{0H} determines the shape of the wind and temperature profiles
- They are a property of the underlying surface and are (assumed) to be a function of the height of the roughness elements

- Surface aerodynamic roughness length is defined from the logarithmic wind profile
- The roughness length is the height at which the winds become zero
- In the model, the displacement height is used to obtain U = 0 at z = 0. This

- Surface aerodynamic roughness length is defined from the logarithmic wind profile
- The roughness length is the height at which the winds become zero
- In the model, the displacement height is used to obtain U = 0 at z = 0. This

What is the roughness length z_0 over land?

tvh v4

tvl v4

			10	
Index	Vegetation type	$\rm H/L~veg$	z_{0m}	z_{0h}
1	Crops, mixed farming	\mathbf{L}	0.25	$0.25 \ 10^{-2}$
2	Short grass	\mathbf{L}	0.1	$0.1 \ 10^{-2}$
3	Evergreen needleleaf trees	Н	2.0	2.0
4	Deciduous needleleaf trees	Н	2.0	2.0
5	Deciduous broadleaf trees	Η	2.0	2.0
6	Evergreen broadleaf trees	Н	2.0	2.0
7	Tall grass	\mathbf{L}	0.47	$0.47 \ 10^{-2}$
8	Desert	_	0.013	$0.013 \ 10^{-2}$
9	Tundra	\mathbf{L}	0.034	$0.034 \ 10^{-2}$
10	Irrigated crops	\mathbf{L}	0.5	$0.5 \ 10^{-2}$
11	Semidesert	\mathbf{L}	0.17	$0.17 \ 10^{-2}$
12	Ice caps and glaciers	_	$1.3 \ 10^{-3}$	$1.3 \ 10^{-4}$
13	Bogs and marshes	\mathbf{L}	0.5	$0.5 \ 10^{-2}$
14	Inland water	_	_	_
15	Ocean	_	_	_
16	Evergreen shrubs	\mathbf{L}	0.100	$0.1 \ 10^{-2}$
17	Deciduous shrubs	\mathbf{L}	0.25	$0.25 \ 10^{-2}$
18	Mixed forest/woodland	Н	2.0	2.0
19	Interrupted forest	Н	1.1	1.1
20	Water and land mixtures	\mathbf{L}	_	—

Note that $z_{0H} = \frac{z_{0M}}{10}$

z0m None v4

What is the roughness length z_0 over ocean?

$$z_{0M} = \alpha_M \frac{\nu}{u_*} + \alpha_{Ch} \frac{u_*^2}{g}$$
$$z_{0H} = \alpha_H \frac{\nu}{u_*}$$
$$z_{0Q} = \alpha_Q \frac{\nu}{u_*}$$

$$u = \text{kinematic viscocity}$$

 $u_* = C_M^{\frac{1}{2}} |U_n|$

$$\alpha_M, \alpha_H, \alpha_Q$$
 = constants

α_{Ch}= Charnock coefficient, provided by the wave model CECMWF

$$C_{\rm M} = \frac{\kappa^2}{\left[\log\left(\frac{z+z_{0m}}{z_{0m}}\right) - \Psi_{\rm M}\left(\frac{z+z_{0m}}{L}\right)\right]^2}$$

Bidlot et al, 2020

What is the roughness length z_0 over ocean?

$$z_{0M} = \alpha_M \frac{\nu}{u_*} + \alpha_{Ch} \frac{u_*^2}{g}$$
$$z_{0H} = \alpha_H \frac{\nu}{u_*}$$
$$z_{0Q} = \alpha_Q \frac{\nu}{u_*}$$

$$v = \text{kinematic viscocity}$$

 $u_* = C_M^{\frac{1}{2}} |U_n|$

 $\alpha_M, \alpha_H, \alpha_Q$ = constants

α_{Ch}= Charnock coefficient, provided by the wave model **℃ECMWF**

What is the roughness length z_0 over sea-ice?

$$z_{0M} = \max(10^{-3}, f(c_i))$$

 $z_{0H} = 10^{-3}$
 $z_{0Q} = 10^{-3}$

 c_i = sea ice concentration

 $f(c_i)$: The dependence on sea-ice concentration reflects observation that partial ice-cover leads to more broken up sea ice and therefore increased drag

'Local' turbulence closure: eddy diffusion above the surface

'Local' turbulence closure: eddy diffusion above the surface

Momentum

$$\overline{u'w'} \sim -K_M \frac{\partial \overline{u}}{\partial z} = -l^2 \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{u}}{\partial z}$$

Thermodynamics

$$\overline{\theta'w'} \sim -K_H \frac{\partial \overline{\theta}}{\partial z} = -l^2 \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{\theta}}{\partial z}$$

'Local' turbulence closure: eddy diffusion above the surface

$$\overline{u'w'} \sim -K_M \frac{\partial \overline{u}}{\partial z} = -l^2 \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{u}}{\partial z}$$

Thermodynamics

$$\overline{\theta'w'} \sim -K_H \frac{\partial \overline{\theta}}{\partial z} = -l^2 \left| \frac{\partial \overline{u}}{\partial z} \right| \frac{\partial \overline{\theta}}{\partial z}$$

Size of eddies get larger further away from the surface:

$$l \sim \frac{\kappa z \lambda}{\kappa z + \lambda}$$

 $w' \sim l \left| \frac{\partial \overline{u}}{\partial z} \right|$ κ =von-Karman constant λ =asymptotic mixing length (150 m)

'Local' turbulence closure: eddy diffusion above the surface

Momentum

$$\overline{u'w'} \sim -K_M \frac{\partial \overline{u}}{\partial z} = -l^2 \left| \frac{\partial \overline{u}}{\partial z} \right| f_M(Ri) \frac{\partial \overline{u}}{\partial z}$$

Thermodynamics

$$\overline{\theta'w'} \sim -K_H \frac{\partial \overline{\theta}}{\partial z} = -l^2 \left| \frac{\partial \overline{u}}{\partial z} \right| f_H(Ri) \frac{\partial \overline{\theta}}{\partial z}$$

 $f_M(Ri)$, $f_H(Ri)$ determined empirically and depend on Ri(z), since we are away from the surface

Local similarity theory in the outer layer

Momentum

$$\overline{u'w'} \sim -K_M \frac{\partial \overline{u}}{\partial z} = -l^2 \left| \frac{\partial \overline{u}}{\partial z} \right| f_M(Ri) \frac{\partial \overline{u}}{\partial z}$$

Thermodynamics

$$\overline{\theta'w'} \sim -K_H \frac{\partial \overline{\theta}}{\partial z} = -l^2 \left| \frac{\partial \overline{u}}{\partial z} \right| f_H(Ri) \frac{\partial \overline{\theta}}{\partial z}$$

- In stable conditions, the mid and upper boundary layer may not be in equilibrium with the surface fluxes
- Local fluxes and stability (*Ri*) dominate

Local similarity theory in the outer layer

Momentum

$$\overline{u'w'} \sim -K_M \frac{\partial \overline{u}}{\partial z} = -l^2 \left| \frac{\partial \overline{u}}{\partial z} \right| f_M(Ri) \frac{\partial \overline{u}}{\partial z}$$

 In stable conditions, the mid and upper boundary layer may not be in equilibrium with the surface fluxes

- Local fluxes and stability (*Ri*) dominate
- Local similarity states that the surface layer functions can be used in the outer layer:

$$K_H = \frac{l^2}{\phi_H(\zeta)\phi_M(\zeta)} \left| \frac{\partial \overline{u}}{\partial z} \right|$$

$$K_M = \frac{l^2}{\phi_M^2(\zeta)} \left| \frac{\partial \overline{u}}{\partial z} \right|$$

ECMWF

Thermodynamics

$$\overline{\theta'w'} \sim -K_H \frac{\partial \overline{\theta}}{\partial z} = -l^2 \left| \frac{\partial \overline{u}}{\partial z} \right| f_H(Ri) \frac{\partial \overline{\theta}}{\partial z}$$

Use the relation

$$Ri = \zeta \, \frac{\phi_H(\zeta)}{\phi_M^2(\zeta)}$$

to convert $\zeta = \frac{z}{L}$ to the gradient Richardson number in the outer layer

Local turbulent diffusion fails in convective boundary layers because it yields unrealistic zero flux in an environment with small gradients

$$\overline{\phi'w'} = a\overline{\phi'_uw'} + (1-a)\overline{\phi'_ew'} + a(\overline{w}^u - \overline{w})(\overline{\phi}^u - \overline{\phi}^e)$$

Turbulent flux within the strong updraft region

$$\overline{\phi'w'} = a\overline{\phi'_uw'} + (1-a)\overline{\phi'_ew'} + a(\overline{w}^u - \overline{w})(\overline{\phi}^u - \overline{\phi}^e)$$
Subcore
flux

Turbulent flux within the strong updraft region

0

w

0

Total turbulent flux of ϕ :

$$\overline{\phi'w'} = a\overline{\phi'_uw'} + \qquad \begin{array}{c} \text{Subcore} \\ \text{flux} \end{array}$$

$$(1-a)\overline{\phi'_ew'} + \qquad \begin{array}{c} \text{Environmental} \\ \text{flux} \end{array}$$

$$a(\overline{w}^u - \overline{w})(\overline{\phi}^u - \overline{\phi}^e) \qquad \begin{array}{c} \text{Mass} \\ \text{flux} \end{array}$$

M-flux covers 80% of the flux for heat and moisture,

Siebesma & Cuijpers, 1995

less for momentum – environment plays a bigger role for momentum transport

Zhu 2015, Schlemmer et al, 2016

е

е

0

 Area of strongest updraft is small compared with the environment (*a*<<1).
 Subcore flux is neglected

0

Ψ (

'Non-Local' turbulence: eddy-diffusivity mass-flux (EDMF) Total turbulent flux of ϕ :

$$\overline{\phi'w'} = -K_{\phi} \frac{\partial \phi}{\partial z} + a(\overline{w}^{u} - \overline{w})(\overline{\phi}^{u} - \overline{\phi}^{e})$$
Environmental Mass
flux flux

Assumptions made:

- Area of strongest updraft is small compared with the environment (*a*<<1).
 Subcore flux is neglected
- 2. Environmental flux is given by Kdiffusion:

$$(1-a)\overline{\phi'_e w'} = -K_\phi \frac{\partial \phi}{\partial z}$$

'Non-Local' turbulence: eddy-diffusivity mass-flux (EDMF) Total turbulent flux of ϕ :

$$M = a(\overline{w}^u - \overline{w})$$

Assumptions made:

- Area of strongest updraft is small compared with the environment (*a*<<1).
 Subcore flux is neglected
- 2. Environmental flux is given by Kdiffusion:

$$(1-a)\overline{\phi'_e w'} = -K_\phi \frac{\partial \phi}{\partial z}$$

'Non-Local' turbulence: eddy-diffusivity mass-flux (EDMF)

The surface mass flux (M) is initialised at the first model level

The mass flux profile then depends on the inversion height (z_i) or the cloud base height (z_{cb})

'Non-Local' turbulence: eddy-diffusivity mass-flux (EDMF)

The surface mass flux (M) is initialised at the first model level

The mass flux profile then depends on the inversion height (z_i) or the cloud base height (z_{cb})

Dry BL - K diffusion that represents the small eddies from surface and a mass-flux component that represents the largest most energetic eddies of the size of the BL, which transport non-locally.

Zi

'Non-Local' turbulence: eddy-diffusivity mass-flux (EDMF)

The surface mass flux (M) is initialised at the first model level

The mass flux profile then depends on the inversion height (z_i) or the cloud base height (z_{cb}) **Dry BL -** K diffusion that represents the small eddies from surface and a mass-flux component that represents the largest most energetic eddies of the size of the BL, which transport non-locally.

Μ

Dry PBL

Zi

Stratocumulus BL the K diffusion due to not only surface but also to cloud top driven eddies, and a non-local mass-flux

Μ

Stratocumulus

radiation Longwave radiation

Shortwave

Cloud base height

Z_{cb}

Inversion height

Kohler et al, 2011, QJRMS

Summary of fundamental concepts

- Local turbulence closure:
 - Assumes local turbulent fluxes can be determined by a K-profile and the background gradients
 - Concept of an eddy lengthscale is used to determine the turbulent mixing
 - Lengthscale depends on height above the surface and the stability
- MO surface layer similarity theory:
 - Possible to relate the surface fluxes and near-surface gradients through universal functions
 - Functions depend on the Obukhov length (measure of surface stability)
- Roughness length:
 - Assumed to be a property of the surface roughness elements (e.g. vegetation / wave height)
- Non-local turbulence (EDMF):
 - Assumes that areas of strongest updrafts are small compared with environment
 - Allows convective mixing in well-mixed environments with small gradients

CECMWF