
© ECMWF May 26, 2023

Data assimilation and machine 
learning

Alan Geer

alan.geer@ecmwf.int

ECMWF data assimilation training course, May 26, 2023

Thanks to: Matthew Chantry, Marcin Chrust, Massimo Bonavita, Sam Hatfield, Patricia 

de Rosnay, Peter Dueben

European Centre for Medium-range Weather Forecasts



Forecast models based on machine learning are here and they’re good!

• Huawei’s Pangu-Weather (Bi et al., 2022, arXiv preprint arXiv:2211.02556)

• Google DeepMind’s GraphCast (Lam et al., 2022, arXiv preprint arXiv:2212.12794)
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ERA5: reanalysis as 

training data (1979-2017) 

and validation data (2018)

HRES: ECMWF T1279Co 

(9 km) 10 day forecast 

https://arxiv.org/pdf/2212.12794.pdf

GraphCast: 10 day forecast 

at 0.25 degrees (25 km)

Run time

30 minutes (128 

nodes of HPC)

1 minute (1 

TPU)



RMS vector wind error of operational forecasts: ML vs. ECMWF HRES
Pangu-Weather running from ECMWF operational analysis (credit: Mat Chantry, Huawei, ECMWF colleagues)
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Forecast day

Pangu-

Weather

HRES



Should we start making forecasts by ML, not physics?

• Full geophysical validation and testing of ML forecasts is ongoing:

– Smoothness, physical consistency between variables? High impact weather? 

• ML only provides a limited subset of outputs (due to cost of training and forecasting an 

ML model to cover the full product range of NWP)
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GraphCast Pangu-Weather ECMWF HRES

Horizontal res 25 km 25 km 8-9 km

Vertical levels 37 13 137

Upper air 

parameters 

(prognostic) 

6

Z/Q/T/U/V/W

5

Z/Q/T/U/V

7

Z/Q/T/U/V/L/I/C

Upper air 

diagnostic

0 0 9

E.g. rain,snow

State size 2x 10^8 7x 10^7 ~10^10

Timestep 6h 1h 7.5 minutes 

10x higher

4-10x higher

Also prognostic 

cloud
2x higher

8x higher

In total HRES has ~1000x more outputs. And full HRES is needed for DA
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An ML example: microwave land 
surface observation operator

Python, Keras, Tensorflow, Numpy, Matplotlib, Xarray



Datasets
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AMSR2 24GHz v-pol observations

10 possible predictors for the 

brightness temperature

Skin temperature

Soil moisture

Leaf area index

+ orography, snow depth, 

snow density, integrated 

water vapour, cloud, rain 

and snow water contents

Labels Features



Data preparation
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Dataset of 470,000 observations 

and colocated model data

Prepare numpy arrays of correct 

shape for Keras

Normalise ‘features’ x to 

roughly -1 to +1

And... (not shown) normalise 

labels y to within 0 to 1



Sigmoid activation function  
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in

out

𝜎()



Feedforward neural network - example
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𝑥1

𝑥2

𝑥3

𝑤11

𝑤1,2
𝑤1,3

𝑤2,3

𝑤2,2

𝑤2,1

𝑤3,1

𝑤3,2

𝑤3,3

+𝑏1

+𝑏2

+𝑏3

x′ = 𝜎(Wx) + b

𝑥3

1 hidden layer

output layer

𝑦+𝑏′1

𝑤′1

𝑤′2

𝑤′3

y = 𝜎(W′x′) + b′



Set up a neural network for the land surface observation operator
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Train it (about 25 minutes on a linux workstation)
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epoch

Loss function Adam – a sophisticated 

stochastic gradient descent 

(SGD) minimiser

Default “loss 

function” is just the 

4D-Var Jo without 

representation of 

observation error.

“Backpropagation” is ML’s term 

for computing gradients of the 

cost function with respect to 

trainable parameters, using 

calls through the adjoints of 

each neural network layer.

~Variational data assimilation without error representations, without regularisation, without state update



Results (ability to fit training dataset) 
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Observations ML predicted

Physically-based simulation produced by 

IFS (RTTOV for atmosphere, dynamical 

emissivity retrieval for surface emissivity)

Hand-written function to recover TB



Problems with this toy NN model for 24 GHz radiances

• It’s not as good as the current physical methods

• The input variables are not sufficient to drive the outputs

– Missing variables – e.g. over Greenland, detailed knowledge of snow and ice 

microstructure

• One of the driving problems for all-surface data assimilation:

– Neither the models nor the input state are fully known

– Chicken and egg problem: can’t train the model if you don’t know the necessary 

inputs well enough
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Types of ML



Types of ML – supervised learning
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x2x1 nn()

Neural 

network Supervised learning:

• ML as a "universal function approximator" (Hornik, 1991)

• Both inputs x1 and outputs x2 need to be provided as 

training data

• An "emulator" / "surrogate" / "empirical model"

Encoder-decoder:

• Data compression

• Data assimilation in the space of an 

autoencoder (Peyron et al., 2021)

• Still needs both inputs and outputs to 

train the model



Types of ML – unsupervised learning – generative ML
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What if we could just have the decoder?

• How do we train it?

• We could train an encoder-decoder 

on something, and then throw away 

the encoder.

• Or find some more clever way...

Latent space: a 

reduced statistical description 

of a phenomemon
A bit like a set of eigenvalues in 

a principal component 

decomposition

Reconstruction

Snowflake images from Leinonen and 

Berne 

(2021, https://doi.org/10.5194/amt-13-

2949-2020)

Generative Adversarial Network (GAN):

• Generator (~decoder): make an 

image

• Discriminator (~encoder): given an 

image, tell if it is real or fake -> drives 

the loss function

Reconstructed

Real

Random vector 

in latent space

https://doi.org/10.5194/amt-13-2949-2020


Generative ML - transformers
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Thg hrt de pyur otr gasfas nff a bgu

Encoder

Ghe

Transformer: Vaswani et al. (2017, 
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf)

• Encode a sequence of words

• Decode the sequence in another language

• "attention mechanism", "positional encoding" etc..

Generative Pre-trained Transformer (GPT)

• GPT-1 is just a transformer like this (120 million parameters)

• GPT-2/3/4 architecture is not public but broadly an extension of these 

concepts (parameters: v3: 175 billion, v4: 1000 billion???)

Inputs – in one language (whole 

word sequence at once)

Outputs – translate to another language (original google application) – or continue in same language (GPT-1)

Decoder – called 

recursively, once per 

output word

Decoder

Ghe ap Ghe ap ok Ghe ap ok jler
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How ML can benefit DA



What does ML bring for data assimilation? 1) surrogate modelling

• Train against existing datasets, typically an existing physical model

• Acceleration:

• E.g. use many more ensemble members, allowing previously unaffordable data 

assimilation algorithms (Chattopadhyay et al. , 2021, GMDD, 

https://doi.org/10.5194/gmd-2021-71, generate a 1000-member ensemble)

• E.g. generate samples of model error from which to derive a model error 

covariance matrix: Bonavita and Laloyaux, 2022 

(https://arxiv.org/abs/2209.11510)

• Space compression:

• E.g. data assimilation in the latent space of an auto encoder (Peyron et al., 2021, 

Latent space data assimilation by using deep learning 

https://arxiv.org/abs/2104.00430)

• Numerical differentiation:

• E.g. provide a tangent linear and adjoint for variational data assimilation: Gravity 

wave drag scheme emulated by ML and then ML used to provide TL/adjoint: 

Hatfield, Chantry et al., 2021(https://doi.org/10.1029/2021MS002521)
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x2x1

Empirical 

model

Known 

states

https://doi.org/10.5194/gmd-2021-71
https://arxiv.org/abs/2209.11510
https://arxiv.org/abs/2104.00430
https://doi.org/10.1029/2021MS002521


What does ML bring for data assimilation? 2) bias correction

Correct model or observation error:

• Train against historical data assimilation increments or departures

• Or train “online” inside a data assimilation system

• Separate, iterative approach (e.g. Brajard et al., 2020, 

https://doi.org/10.1016/j.jocs.2020.101171 )

• Online training inside variational data assimilation is in development

• A nonlinear extension to existing data assimilation bias correction methods 

• Weak constraint data assimilation

• Parameter estimation

• Variational bias correction (VarBC)

• Example: model error correction in IFS, Bonavita and Laloyaux, 2020 

(https://doi.org/10.1029/2020MS002232)

20

m() x2x1

Imperfectly known 

physical model 

nn()

+

Neural network to 

correct model error

Weak constraint 

4D-Var

Neural network 

estimate of 

model bias

https://doi.org/10.1016/j.jocs.2020.101171
https://doi.org/10.1029/2020MS002232


What does ML bring for data assimilation? 3) replace entire DA system

• Train an ML model to do the DA step – e.g. take innovations 𝛿𝐲 and produce increments 𝛿𝐱𝑎

• Cintra et al. (2016, Tracking the model: Data assimilation by artificial neural network. In 2016 International Joint Conference on 

Neural Networks (IJCNN) (pp. 403-410)) 

• Arcucci et al. (2021, https://doi.org/10.3390/app11031114)

• Problems:

– Most work so far has been done on simple test systems (e.g. Lorenz ‘63)

– Real DA uses H() operator to map diversely in space, time and to observable variables (e.g. observation space)

– How do we adapt to new observation types? How much training (and retraining) is needed?
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( )a b bH= + −x x Κ y xThe analysis equation

a =x K y (observation space)(model space)

1( )T T −= +Κ BH HBH R

xa - analysis vector

xb - background vector 

y - observation vector

H(xb) - forward observation operator

H - Jacobian or tangent linear 

approximation of H

R – observation error covariance

B – background error covariance

Kalman gain matrix

bH = −y y x is the innovation vector

a a b = −x x x is the analysis increment𝛿𝐲 Empirical 

model
𝛿𝐱𝑎



What does ML bring for data assimilation? 4) learn new models

Learn new models directly from observations, where physical models do not exist or 

are not good enough:

• If we train an ML forecasting model against analysis, it learns to map analyses (the 

combination of forecast and observations) not forecast state to forecast state (if 

training to a physical forecast model)

– ML forecasting models like Pangu-Weather or Graphcast may already be 

encoding some “new physics” – at minimum, online bias corrections

• Train against high resolution models (e.g. train moist physics scheme for a GCM 

against a convection resolving model)

• Train directly against observations? 

– Irregular and indirect link to observation space makes this hard

– Solution? Train empirical components inside a physical DA system

22



What does ML bring for data assimilation? 5) new observation operators 
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x

h(x,w)

y

Well-constrained model 

variables from the DA system

Observations

Train a neural network observation 

operator (w = weights) where a 

physical model is not available

• Example: land surface radiances at microwave frequencies  

• Example (in retrieval direction) operationally used at ECMWF for soil moisture assimilatiuon 

from SMOS: Rodriguez-Fernandez et al., 2019, "SMOS Neural Network Soil Moisture Data Assimilation in a Land 

Surface Model and Atmospheric Impact", https://www.mdpi.com/2072-4292/11/11/1334

E.g. ocean surface wind speed 

E.g. backscatter triplet from scatterometer

https://www.mdpi.com/2072-4292/11/11/1334
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Theoretical links between ML and DA



4D coupled earth system assimilation
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Observations                    Forward model: observation operator and geophysical models

Satellite radiance 

sensors, 

scatterometers,

radars

GPSRO, AMVs, 

scatterometer, 

aircraft, sonde, 

met. stations, 

ships, buoys … 

𝑦 = ℎ

𝑥atmos
𝑥land
𝑥snow
𝑥seaice
𝑥ocean
𝑥…

,

𝑤atmos
𝑤land
𝑤snow
𝑤seaice
𝑤ocean
𝑤…

Note: in 4D variational data 

assimilation, h() includes observation 

operator and geophysical model

Model parameters, often 

shared with observation 

operatorsGeophysical state



October 29, 2014

The forward and 
inverse problem
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𝑥, 𝑤 = ℎ−1 (𝑦) Inverse model

The best that observations can do is to provide a 

statistical improvement in our knowledge of x and w

No unique solution: ill-posed

𝑦 = ℎ(𝑥, 𝑤)
Forward model

Geophysical 

state

Model 

parameters

Observations
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Bayes’ theorem

27

P (y | x, w)



The inverse problem solved by Bayes theorem
as the first lecture of this DA course, but extended with state AND parameters
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𝑃(𝑥,𝑤|𝑦) = 𝐾 (𝑦, 𝑃 𝑦|𝑥, 𝑤 , 𝑃(𝑥, 𝑤))

Probabilistic equivalent of 

the forward model h()

Geophysical 

state

Model 

parameters

Bayes 

theorem

Observations

(Posterior) Probability of x and w given y Prior probability of x and w 
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Cost function for variational DA
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Cost function

Assume Gaussian errors (error standard deviation 𝜎) 

and for clarity here simplify to scalar variables

and ignore any covariance between observation, model or state error

Observation termDA Prior knowledge of 

state

Prior knowledge of 

model

Prior (background)
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Cost / loss function equivalence of ML and variational DA
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Cost function

Assume Gaussian errors (error standard deviation 𝜎) 

and for clarity here simplify to scalar variables

and ignore any covariance between observation, model or state error

Loss function

Observation termDA

ML
Basic loss 

function

Prior knowledge of 

state

Weights 

regularisation

Prior knowledge of 

model

Feature 

error?



Machine learning (e.g. NN)                        Variational data assimilation
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Labels y Observations yo

Features x State x

Neural network or other 

learned models

y′ = 𝑊 x Physical forward 

model

y = 𝐻 x

Objective or loss  

function

y − y′ 2 Cost function 𝐽 = 𝐽𝑏 + yo − 𝐻 x
𝑇
R−1 yo − 𝐻 x

Regularisation w Background term 𝐽𝑏 = x − xb
𝑇
B−1 x − xb

Iterative gradient descent Conjugate gradient method (e.g.)

Back propagation Adjoint model 𝜕𝐽

𝜕x
= H𝑇

𝜕𝐽

𝜕y

Train model and then apply it Optimise state in an update-forecast cycle

Boukabara et al. (2021) https://doi.org/10.1175/BAMS-D-20-0031.1

https://doi.org/10.1175/BAMS-D-20-0031.1
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Bayesian equivalence of ML and DA
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https://doi.org/10.1162/neco_a_01094

https://arxiv.org/abs/2001.06270

https://doi.org/10.1175/1520-0477(1998)079%3C1855:ANNMTP%3E2.0.CO;2

https://doi.org/10.1098/rsta.2020.0089Geer (2021)

Bocquet et al. (2020)

Abarbanel et al. (2018)

Hsieh and Tang (1998)

Goodfellow et al. (2016) https://www.deeplearningbook.org

As a Bayesian network

𝑦 = ℎ(𝑥, 𝑤)

https://doi.org/10.1098/rsta.2020.0089


October 29, 2014

Bayesian networks: representing the factorisation of joint probability distributions
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1. Factorise in two different ways using the chain rule of probability

2. Equate the two right hand sides and rewrite

3. Rewrite by putting back the joint distributions of x,w: Bayes’ rule 



Time evolution of state – cycled data asimilation
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Time evolving 

state

Time-constant 

model (parameters)

Observations



Inside an atmospheric model & data assimilation timestep

35EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

One model 

time-step



Learning an improved model of cloud physics (ML or DA)
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We want to train a model against observations, but we 

cannot directly observe gridded intermediate states 𝑥1.1
and 𝑥1.2 … or more precisely model tendencies …



Inside an atmospheric model
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… so train the model inside 

the data assimilation system
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Current issues and ideas combining 
machine learning and DA / physics

A few highlights from a rapidly developing new field



Combine physical and empirical models: Physically constrained ML
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https://github.com/maziarraissi/PINNs
Raissi, Maziar, Paris Perdikaris, and George Em Karniadakis. "Physics Informed Deep 

Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations." 

arXiv preprint arXiv:1711.10561 (2017)

Custom loss function

Neural network

Burger’s equation
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
− 𝜐

𝜕2𝑢

𝜕𝑥2
= 0

Gradients of the network

https://arxiv.org/abs/1711.10561


Hybrid data assimilation and machine learning: train the neural network 
(forecast model, or bias correction) as part of the data assimilation process

• Simultaneous estimation of the initial conditions, NN parameters and dynamical parameters of a model 

(e.g. Lorenz ’63) using data assimilation (Hsieh and Tang, 2001, https://doi.org/10.1175/1520-

0493(2001)129<0818:CNNTID>2.0.CO;2)

• Use iterative cycles of data assimilation followed by neural network training (Brajard et al., 2020, 

https://doi.org/10.1016/j.jocs.2020.101171)

• In development at ECMWF – train a NN within 4D-Var – quasi-geostrophic (QG) model / OOPS

– “Online model error correction with neural networks in the incremental 4D-Var framework”

– Alban Farchi, Marcin Chrust, Marc Bocquet, Patrick Laloyaux, Massimo Bonavita (2022, 

https://doi.org/10.48550/arXiv.2210.13817)

• “Online learning” or sequential learning is a thing in ML too (compared to ”train once” approach)

– e.g. Online sequential Extreme Learning Machine (OS-ELM, Liang et al., 2006) https://doi.org/10.1109/TNN.2006.880583

– e.g. Forecasting daily streamflow using OSELM (Lima, Cannon, Hsieh, 2016) 

https://doi.org/10.1016/j.jhydrol.2016.03.017 
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https://doi.org/10.1175/1520-0493(2001)129%3c0818:CNNTID%3e2.0.CO;2
https://doi.org/10.1016/j.jocs.2020.101171
https://doi.org/10.48550/arXiv.2210.13817
https://doi.org/10.1109/TNN.2006.880583
https://doi.org/10.1016/j.jhydrol.2016.03.017


Online bias correction / weak-constraint 4D-Var
Massimo Bonavita, Patrick Laloyaux
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• Evolution of WC-4Dvar: NN-derived  Q 

matrix (equivalent of B matrix, but for 

weak constraint model error correction) 

and extension to lower stratosphere (200 

hPa)

• Early version documented in 

https://doi.org/10.48550/arXiv.2209.11510

Example Q 

matrices
Improved fit to stratospheric 

temperature sounding channels at 

analysis and background (due to model 

T bias reduced)

https://doi.org/10.48550/arXiv.2209.11510


The real payoff: apply online model bias corrections in the forecast model
Marcin Chrust, Alban Farchi, Patrick Laloyaux, Massimo Bonavita
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Score cards 

(verifications against 

observation, 3 DEC 

2020 – 28 FEB 2021)

Exp: Online NN model 

error correction (1-

hourly) applied in 

FCLONG (1-hourly) with 

reduced magnitude: 

Control has no online 

model error correction

Blue = reduced forecast error in experiment compared to 

control (red = increased)

Time through 10 day forecast 

SH          NH            Tropics

Variable: Z

T

Vector wind 
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Learn a sea ice surface emissivity model using hybrid ML-DA techniques
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1 year of AMSR2 radiance 

observations 
at 64 million locations for 10 

channels (10 – 89 GHz, v/h)

All-sky 

radiative 

transfer

Inputs from IFS at 64 million 

observation locations:
background atmosphere and surface -

Radiative transfer terms from RTTOV-

SCATT, effective cloud fraction, skin 

temperature, ocean surface emissivity, 

location etc.

Sea ice 

surface 

emissivity 

model

All-surface 

emissivity

Gridded empirical surface emissivity properties
62000 points on 40 km grid

365 days

3 surface properties

Gridded sea ice fraction
62000 points on 40 km grid

365 days

0.6 billion observations

4.9 billion inputs

91 million trainable state parameters

80 trainable model parameters

4 additional loss terms

Tensorflow/Keras training

Map to observation space

Geer (2023) in preparation or come to ISDA online, 2nd June - https://isda-online.univie.ac.at



Fixed parameter

Dependent parameter

Trainable parameter

AMSR2 observations

Surface emissivity

Known atmosphere 

radiative transfer

365 day 

maps of sea 

ice fraction

365 day 

maps of 

empirical 

parameters h() Observation operator: 

map to observation location in 

time and space

w – trainable weights of NN 

model for sea ice

Empirical neural network for 

sea ice emissivity

Known water surface 

emissivity

Bayesian network representation of the “sea ice” model – which 

is then implemented and solved using Tensorflow/Keras



Fundamentals of this “Empirical state” method

Trainable gridded 

empirical parameters 

representing 

unknown 

geophysical state

Empirical 

parameters at 

observation 

location

Observation 

operator

Physical variable 

(e.g. sea ice 

emissivity)

Trainable 

neural network 

weights

Neural network 

model

The training process simultaneously learns: (1) empirical 

state, (2) the meaning of the empirical state, (3) the model to 

go from the empirical variables to the physical quantity



Fundamentals of this “Empirical state” method

Think back to the decoder in 

generative ML

Latent state Reconstructed 

state

Think data assimilation



Sea ice surface emissivity model in the IFS

• Surface emissivity model trained offline (previous slide)

• Use this as a fixed model (no further training) within the IFS 

4D-Var for assimilating microwave observations over sea ice

• Where do the empirical inputs come from? 

– Retrieve them from the observations as part of 4D-Var 

(sink variable approach)

• Why?

– Retrieve high quality sea ice fraction directly within the 

atmospheric 4D-Var system

– Use surface-sensitive microwave observations in sea 

ice areas and in close proximity ocean areas -> 

significant improvements in Southern ocean forecast 

skill 

• To be implemented operationally in June 2024 as part of 

IFS cycle 49r1 (hopefully) 

Empirical 

model

Ice surface 

emissivity at 

microwave 

frequencies

3 completely 

empirical 

variables + 

skin 

temperature

Temperature: change in RMSE

Blue: reduced T (and wind, humidity) 

errors in vicinity of sea ice
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Sea ice fraction retrieval: rapid freezing 2nd Nov 2020 

48

New retrieval from AMSR2 Current IFS (OCEAN5) Retrieved – current IFS

Difference 

in sea ice 

fraction

IFS estimate is delayed by up to 

about 48 hours due to a very long 

processing chain



Summary: generating new empirical models using ML and DA

• Typical machine learning and variational data assimilation are similar implementations of Bayes’ theorem

• Including known physics into a trainable network is a way of adding prior information in a Bayesian sense

• Existing data assimilation approaches can be very helpful in machine learning:

• Physically-based loss functions

• Physically-based observation (label) and background (feature) errors

• Observation operators to map from grid to irregular and transformed observation space (e.g. satellite radiances)

• Data assimilation frameworks (e.g. weather forecasting) are evolving to be able to train and update empirical models 
(e.g. neural networks) as part of routine data assimilation activities

– E.g. model error correction: don’t throw away the physical model – improve it!
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Machine learning 

with physical 

constraints

Data assimilation 

with parameter 

estimationMachine learning 

and data 

assimilation: hybrid 

physical-empirical 

networks


