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Outline
• What is data assimilation and how does it work?

• Data assimilation ingredients: Observations and models 

• Blending observations and model: the Bayes perspective

• A whirlwind introduction to DA methods in the geophysical 
sciences: 

• Particle Filters

• Kalman Filters 

• Variational methods

• Hybrid methods
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Data Assimilation

NWP definition of DA: Process by which “optimal” initial 
conditions for numerical forecasts are estimated.

– The best analysis is the analysis that leads to the best forecast 
(different criteria for other applications, eg reanalysis) 

– Optimal in a statistical sense: minimises error and/or maximises 
probability of the analysis being accurate

– Provides an estimate of initial uncertainties, typically through a 
Monte Carlo procedure (i.e., ensemble DA) 

– Do it “quickly”  – typically in less than 45 minutes on a large high 
performance computer (for global NWP; for limited area NWP 
available time is usually much less!) – and in a cycled manner
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Data Assimilation

The goal of Data Assimilation is:

“Estimate the probability distribution function (pdf) of the Earth 
system state at the initial time”

The initial state pdf can be explicitly sampled (Ensemble DA) and is 
usually summarised in terms of its central value (the “analysis”) and its 
uncertainty (the variance around the central estimate). 

This representation of the initial pdf in terms of its first two moments 
(mean and covariance) is appropriate for ~Gaussian (or at least unimodal) 
error distributions, it loses meaning for multimodal error distributions.

In large scale geophysical applications of DA we are forced to assume  
approx. Gaussianity to make the problem computationally tractable 
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Computer (with a lot 
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The Data assimilation cycle

l An analysis is not produced by observations alone!
l The observations are used to correct errors in the short forecast from the 

previous analysis time (every 12 hours at ECMWF, 6-3 hourly in other global 
NWP systems; 3-1 hourly for higher resolution, limited area models).

l The short-range forecast carries information from past observations into 
the current analysis 



The Data assimilation cycle

l At ECMWF, twice a day about 40,000,000 observations are used to correct 
the 250,000,000 variables that define the analysis state.

l This is done by a 4-dimensional adjustment in space and time based on the 
available observations (4D-Var); 4D-Var is computer intensive (approx. as 
much as the 10-day forecast)



Observations



Distribution of in situ observations

BUOYS

PILOT/Profilers

Aircraft

SYNOP/METAR/SHIP

Radiosondes

https://www.ecmwf.int/en/forecasts/quality-
our-forecasts/monitoring-observing-system



Satellite data sources used by ECMWF’s analysis
Imagers: SSMI, SSMIS, AMSR-E, 
TMI

OzoneGPS radio occultations

Sounders: NOAA AMSU-A/B, HIRS, AIRS, IASI, MHS

Geostationary+MODIS: IR and AMVScatterometer ocean low-level winds: ASCAT



Observation errors
● Even the current global observing system is not able to observe the 
atmosphere completely (data voids): from a mathematical standpoint data 
assimilation is an under-determined problem
● Most satellite observations (e.g. radiances) are only indirectly related to the 
quantities of interest (i.e., grid point values of T,u,v,q,O3,…)
● Majority of satellite observations have coarse vertical resolution
● Observations measure quantities not located at grid points

In order to compare observations (y) and model (x) we need to perform spatial 
and temporal interpolations of the model fields and (for satellite observations) 
transform model fields into radiances: we call this set of operations the 
observation operator (H ):

𝐲 =H 𝐱

Note: we project model fields into observed quantities, not observations into model 
variables (this second operation is called a “retrieval”)



Observation errors
• Observations are affected by different types of errors
• Denoting y* as the true observations of the model state (𝐲∗ =H 𝐱∗ ):

𝐲 − 𝐲∗ = 𝜀" = 𝜀# + 𝜀$ + 𝜀% + 𝜀&

𝜀# =Gross errors (incorrect coding of observation, duplicates, incorrect 
location, wrong cloud clearing, etc.). 

𝜀$ =Measurement errors (instrument noise)

𝜀% =Representativity errors (e.g., in situ observations compared to grid point 
model value)

𝜀& =Observation operator (Forward model) errors (e.g., errors in the radiative 
transfer model, interpolation errors, etc.)



Observation errors
𝐲 − 𝐲∗ = 𝜀" = 𝜀# + 𝜀$ + 𝜀% + 𝜀&

• 𝜀! (gross errors) are dealt with by Observation Quality Control techniques (to be 
discussed later this week); Some of these checks are applied before ingesting the 
observations (Climatological checks, consistency checks, first guess checks), others 
are part of the analysis algorithm itself (buddy checks, variational quality control)

• Observations are assumed to be un-biased:
𝜀" = 0

• Biases are dealt with specific Bias Correction techniques (to be discussed this week), 
which can be part of the analysis algorithm itself (e.g., Variational Bias Correction)

• The covariance matrix of the observation errors is denoted as R:

𝜀"𝜀"' = 𝐑



The forecast model



The forecast model is a very important part of 
the data assimilation system

l The short-range forecast connecting successive analysis updates carries 
information from past observations to the current analysis time (this is 
called the “background”): the better the model the more accurate the 
background state

l A good model starting from accurate previous analysis will produce an 
accurate background        the analysis will make only small corrections to 
the background 

l In fact when the analysis makes large corrections to the background state is 
usually a sign that something interesting is happening… (e.g., rapid 
development not present in the forecast; suspect observations)

l In modern data assimilation methods (4D-Var, EnKF, PF) the analysed state 
is constructed so as to respect the physical and dynamical balances of the 
model the model is an integral part of the analysis algorithm



The forecast model is a very important part of 
the data assimilation system

Physical processes in the ECMWF model



Model errors
• Despite their increasing complexity and sophistication models are not perfect 

(yet)!

• Sources of model error include: missing physical processes, errors in 
parametrizations of physical processes, discretisation errors (from continuous 
PDEs to discrete formulation), error in the forcing fields, etc., 

• We define model error as (* denotes true state, i is the time index):

𝒙𝒊∗ =M 𝒙𝒊)𝟏∗ + 𝛈+

• Model error can in general have non zero mean:
𝛈+ ≠ 0

• The covariance matrix of the model errors is denoted as Q:

𝛈+𝛈+' = 𝐐+

• The treatment of model error in DA will be discussed in more detail in a lecture 
later this week



Blending observations and model 
information: the Bayes perspective
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The Bayes perspective
• Both observations and models are affected by random errors*
• This means that they should be described as random variables
• All we can/need to know about random variables are their probability distribution 

functions:

Pr 𝑎 ≤ 𝑋 ≤ 𝑏 =∫"
# 𝑝 𝑥 𝑑𝑥

* Assume here that systematic errors have been separately dealt with



The Bayes perspective
• Bayes law descends directly by the definition of conditional probabilities:

𝑝 𝐴, 𝐵 = 𝑝 𝐴|𝐵 𝑝 𝐵 = 𝑝 𝐵|𝐴 𝑝 𝐴

⇒

𝑝 𝐴|𝐵 =
𝑝 𝐵|𝐴 𝑝 𝐴

𝑝 𝐵

Where:
𝑝 𝐴, 𝐵 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝐴 𝑎𝑛𝑑 𝐵 𝑏𝑜𝑡ℎ ℎ𝑎𝑝𝑝𝑒𝑛𝑖𝑛𝑔 (𝑗𝑜𝑖𝑛𝑡 𝑝𝑟𝑜𝑏. 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)

𝑝 𝐴|𝐵 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡 𝐴 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 𝐵 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑟𝑜𝑏. 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑝 𝐴 , 𝑝 𝐵 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡 𝐴 𝐵 ℎ𝑎𝑝𝑝𝑒𝑛𝑖𝑛𝑔 (𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑏. 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)



The Bayes perspective
• An illustration (http:en.wikipedia.org/wiki/Base_rate_fallacy): 

The police have been issued with breathalysers which never fail to detect a drunk person but have 
a 5% rate of false positives. Prior campaigns have shown that, on average, one in one thousand 
drivers drives drunk. If the police stop a driver at random, and he/she results positive to the 
breathalyser, what is the probability that he/she is actually drunk?

Event A: being a drunk driver. Probability of being a drunk driver, before being tested:  𝑝 𝐴 = 0.001

Event B: testing positive to the breathalyser. The probability of testing positive is 1 for the drunken 
subset of the drivers (0.001) and 0.05 for the sober subset of the drivers (0.999):                    
𝑝 𝐵 = 1 ∗ 0.001 + 0.999 ∗ 0.05 = 0.05095

Probability of testing positive to the breathalyser when drunk: 𝑝 𝐵|𝐴 = 1

Probability of being drunk after testing positive to the breathalyser, 𝑝 𝐴|𝐵 :    

𝑝 𝐴|𝐵 =
𝑝 𝐵|𝐴 𝑝 𝐴

𝑝 𝐵 =
1 ∗ 0.001
0.05095 = 0.0198

In words: out of 1000 people stopped by the police, about 51 will result positive, but the probability that 
anyone of them is actually drunk is less than 2%. (This shows how Bayesian thinking can be useful 
even beyond data assimilation!)   



The Bayes perspective
• Another illustration: the Monty Hall problem 

(https://en.wikipedia.org/wiki/Monty_Hall_problem): 

This is a brain teaser inspired by the American quiz show Let's Make a Deal and named after its 
original host, Monty Hall. The version of the problem that appeared in the Parade mag1990 read:

“Suppose you're on a game show, and you're given the choice of three doors. Behind one door 
is a car, behind the others, goats. You pick a door, say #1, and the host, who knows what's 
behind the doors, opens another door, say #3, which has a goat. He says to you, "Do you want 
to pick door #2?" Is it to your advantage to switch your choice of doors?”

Let us use our Bayesian tools to see what the savvy game show participants should do! Let 
usindicate with  p(1), p(2), p(3) the probability that the car is behind door 1,2,3. Initially 
p(1)=p(2)=p(3)=1/3. To check whether it is a good idea to switch door, we are interested in is the 
probability of the car being behind door=2 after the host has chosen door=3 and we (the guest) 
have chosen door=1, in symbols:

𝑝 2|𝐻 = 3, 𝐺 = 1



The Bayes perspective
• Another illustration: the Monty Hall problem (continued) 

𝑝 2|𝐻 = 3, 𝐺 = 1 = 7 8,&:;,#:<
7 &:;,#:<

(from the definition of conditional prob.)

7 8,&:;,#:<
7 &:;,#:<

= 7 &:; | 8,#:< 7 8,#:<
7 &:;,#:<

(again from def.of conditional prob.)

Now note that a) the probability that the host chooses door=3, given the 
car is in 2 and we have chosen door=1 is 1; and b) the probability that the 
car is behind door=2 is independent of our choice of door=1:
7 &:; | 8,#:< 7 8,#:<

7 &:;,#:<
= 7 8 7 #:<

7 &:; |#:< 7 #:<
= 7 8

7 &:; |#:<
= </;

</8
= 8

;

It does make sense to switch our choice to door=2! 
This is another example of how the probability of the new piece of 
information (the Host’s choice of door=3) has modified the a-priory 
probability of where the car might be.



• At an abstract level, we can think of the analysis process as updating our prior knowledge about the state, 
represented by a background forecast and its pdf, with new observations, represented by their values and 
their respective pdfs: 

𝑝 𝒙|𝒚 = $ 𝒚|𝒙 $ 𝒙
$ 𝒚 = $ 𝒚|𝒙 $ 𝒙!|𝒙

$ 𝒚 𝑝 𝒚|𝒙 𝑝 𝒙#|𝒙

• 𝑝 𝒙!|𝒙 = prior pdf (encapsulate our knowledge about the state before new observations)

• 𝑝 𝒚|𝒙 = observations likelihood (pdf of the observations conditioned on the state)

• 𝑝 𝒙|𝒚 = posterior pdf (updated pdf of the state after the analysis)

• 𝑝 𝒚 = marginal pdf of the observations (does not depend on 𝒙: normalising constant in Bayes’ law)

The Bayes perspective

𝑝 𝒙>|𝒙

𝑝 𝒚|𝒙

𝑝 𝒙|𝒚

µ



𝑝 𝒙|𝒚 𝑝 𝒚|𝒙 𝑝 𝒙#|𝒙 (1)

• In principle an analysis update requires being able to compute the product pdf of the 
random variables 𝒚, 𝒙#. This is usually not possible to do explicitly unless we choose 
very specific functional forms for the pdfs

• We thus need to make approximations

• One idea is to use Monte Carlo methods to sample and propagate the pdfs in (1): 
Particle Filters 

• In Particle Filters, pdfs are sampled by a collection of “particles” (i.e., model states) 
with assigned weights:

𝑝(𝒙)~∑)*+,-𝑤)𝛿 𝒙 − 𝒙) (2)

Particle Filters

µ



• The pdf is propagated in time by integrating the different particles with the model:

𝑝 𝒙#|𝒙 ~∑)*+,-𝑤)𝛿 𝒙 −𝑀 𝒙) (3)

• In the analysis update the weights of the particles are updated according to the 
observations’ likelihood:

𝑤)" 𝑤)𝑝 𝒚|𝒙)

• The ensemble of particles is usually resampled, i.e. high-weight particles are 
duplicated and low-weight particles discarded

• The Particle Filter described here is one of the most basic implementation (Bootstrap 
Particle Filter, Gordon et al., 1993)

Particle Filters

µ

From M. Bocquet



• Particle Filters work well for very small state space sizes and observation sizes (N~10 
to 100)

• For larger state space and/or observation sizes the required number of particles 
increases exponentially (Snyder et al., 2015)

• A large body of contemporary research is devoted to reduce the computational 
demands of particle filters for high dimensional systems

• One of the main themes of PF research is how to prevent the particles from diverging 
from the true state and becoming too unlikely, i.e. uninformative about the true state 

• One of the ideas is to also use observations (and not only the model) to “guide” the 
particles’ evolution from t=tn-1 to t=tn; many variants possible (Ades and van 
Leeuwen, 2014)

• Another over-arching idea is to introduce some form of localisation in the PF (similar 
to what is done for the EnKF): see Farchi and Bocquet, 2018, for a review

Particle Filters



• Regardless of the assimilation algorithm the number of particles (ensemble members) 
needed to reliably resolve non-Gaussian pdfs is very high:

Particle Filters

Histograms of a 6 h 
ensemble forecast for 
specific humidity 
(g kg−1) for a 
intermediate AGCM.
Miyoshi et al., 2014



• Not making assumptions on the shape of the prior and the likelihood pdf makes the 
Bayesian problem difficult (i.e., analytically and computationally intractable)

• Usual choice is to assume a Gaussian distribution for the both the observations’ 
likelihood and the prior pdf of the background forecast

• Why Gaussian?

1. Mathematically tractable problem;

2. Full distribution characteristics defined by only its first two moments (mean 
and covariance);

3. Supported by the Central Limit Theorem;

4. Least committed distribution for given first and second moments (i.e., we are 
making the least amount of hypotheses on the shape of the pdf for a given 
assumed variance)

The Gaussian approximation



• Usual choice is to assume a Gaussian distribution for the both the observations’ 
likelihood and the prior pdf

• where 𝜀.𝜀./ = 𝐑 and 𝜀#𝜀#/ = 𝐏𝑩 are the covariances of the errors of the 
observations and of the prior (background forecast)

• Under this assumption the posterior (analysis) distribution 𝑝(𝒙|𝒚) can also be 
expressed as a Gaussian distribution (to be shown during the week) 

The Gaussian approximation

𝑝 𝒚|𝒙 =
𝟏

𝟐𝝅 𝑵/𝟐 𝐑 𝟏/𝟐 𝒆𝒙𝒑 −
𝟏
𝟐
𝒚 − 𝑯 𝒙 𝑻 𝐑 '𝟏 𝒙𝒃 −𝑯 𝒙

𝑝 𝒙!|𝒙 =
𝟏

𝟐𝝅 𝑵/𝟐 𝐏𝑩 𝟏/𝟐 𝒆𝒙𝒑 −
𝟏
𝟐 𝒙𝒃 − 𝒙 𝑻 𝐏𝑩 '𝟏 𝒙𝒃 − 𝒙

𝑝 𝒙|𝒚 𝑝 𝒚|𝒙 𝑝 𝒙!|𝒙 𝒆𝒙𝒑 − 𝟏
𝟐 𝒚 − 𝑯 𝒙 𝑻 𝐑 '𝟏 𝒚 − 𝑯 𝒙 − 𝟏

𝟐 𝒙𝒃 − 𝒙 𝑻 𝐏𝑩 '𝟏 𝒙𝒃 − 𝒙µ µ



• Once we know (at least in principle!) the form of the posterior distribution 𝑝(𝒙|𝒚) we 
have a choice:

1) Either we can solve for the mean and the covariance of the posterior distribution:

𝒙" = #𝒙𝑝 𝒙|𝒚 𝒅𝒙

𝐏" = # 𝒙 − 𝒙" 𝒙 − 𝒙" # 𝑝 𝒙|𝒚 𝒅𝒙

Methods based on this approach include Optimum Interpolation (O.I.), Kalman  
Filter, Ensemble Kalman Filter (EnKF). These will all be discussed this week. The 
analysis found through this approach is referred to as the minimum variance 
solution or the best linear unbiased estimate (BLUE).

Note: Kalman Filter based methods can be derived without making any 
assumptions about the Gaussianity of the errors. However only if all error 
distributions are Gaussian will the KF provide the correct posterior distribution (i.e. 
Bayes posterior pdf). 

Kalman Filter methods



2) Alternatively we might choose to estimate the mode of the posterior distribution        
𝑝(𝒙|𝒚), i.e. find the analysis 𝒙$ as the state that corresponds to the maximum of 
the posterior distribution (=> the most probable state):

𝒙" = argmax
𝒙

𝑝 𝒙|𝒚

This way of attacking the problem leads to the variational approach (3D-Var, 4D-
Var). They will be covered extensively in this week’s lectures. The solution found in 
this way is called the maximum a-posteriori probability state (MAP).   

In the variational framework the linear and Gaussian assumptions can be relaxed, 
i.e. the full nonlinear analysis problem can be decomposed into a series of  linear 
Gaussian problems (incremental 4D-Var, to be discussed later this week). 
However there is no guarantee of convergence!

Variational methods



• For a Gaussian pdf the mean and the mode of the distribution coincide:

• Thus if all the system statistics are Gaussian the minimum variance and maximum a-
posteriori solutions coincide

Kalman Filter vs Variational methods

mean=mode



• For non-Gaussian pdfs the mean and the mode of the distribution generally differ:

• In non-Gaussian assimilation problems the minimum variance and maximum 
likelihood solutions will differ

• Which solution is better is problem dependent

• The more non-Gaussian the problem the more one needs information about the whole 
posterior pdf, not only its first two moments! 

Kalman Filter vs Variational methods

mean≠mode

mode
mean



• Both Variational and Kalman Filter based analysis methods require estimates of the 
background state and its error covariances (𝑝 𝒙#|𝒙 ~N 𝒙%, 𝐏& )

• The background state is usually provided by an integration of the forecast model started 
from the previous analysis:

𝒙#; =M 𝒙";<+

• The background (and analysis) error statistics are usually sampled with Monte Carlo 
methods: an ensemble of states is used to estimate the errors statistics

• Each ensemble member is advanced using a perturbed version of the model:

𝒙$,&
' =M 𝒙",&

'() + 𝛈' 𝑖 = 1,2, … , N()*

• Each ensemble member is usually updated using perturbed observations (though there are 
methods that can avoid this):

𝒚& = 𝒚 + 𝜺*,& 𝑖 = 1,2, … , N+,-

Hybrid DA methods



Hybrid DA methods

36



• Data assimilation systems that have an ensemble data assimilation component used for the 
estimation of analysis and background errors are called hybrid data assimilation systems 
(Note: this definition is not universal!)

• We will discuss the various options for the ensemble data assimilation component in two 
dedicated lectures

• All major global NWP Centres run some form of hybrid data assimilation for atmospheric 
DA: a variational analysis cycle to estimate the mean/mode of the analysis pdf coupled with 
an ensemble data assimilation system to give a flow-dependent estimate of the second 
moments (covariances) of the error distributions. 

• The ensemble DA component not only serves the purpose of estimating the background 
errors used in the analysis update, but it also provides a Monte Carlo sampling of the 
analysis pdf from which ensemble forecasts can be run 

Hybrid DA methods



• Data assimilation in NWP aims to optimally blend information from observations and model 
to produce an accurate and physically consistent estimate of the initial state of the 
atmosphere and of the other components of the Earth System

• Both observations and models are affected by systematic and random errors: these need to 
be evaluated and taken into account in order to produce a statistically optimal analysis  

• The Bayesian approach provides a unified theoretical framework for data assimilation

• Particle Filters provide a Monte Carlo implementation of the Bayes’ Law in data 
assimilation. Asymptotically correct for 𝑁()* → ∞, but not (yet) applicable to high 
dimensional systems

• A Gaussian assumption on the error statistics is usually made to make the problem 
tractable in realistic geophysical DA

• Kalman Filter type methods and Variational methods can both be derived from Bayes’ Law 
under these assumptions: they lead to the same solution for linear, Gaussian problems  

• Hybrid data assimilation methods currently used in global NWP combine a variational 
analysis system with an ensemble data assimilation component for error estimation

Summary
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