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A Covid story

Forehead 37.5◦C A priori

Armpit L 36.0◦C Observation bias
36.3◦C Observation error

Armpit R 36.2◦C Obs. operator error
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Interpreting the weather situation

Definition
Analysis: The process of approximating the true state of a (geo-)physical
system at a given time using the available knowledge.

✘ First hand analysis of synoptic
observations in 1850 by
LeVerrier and Fitzroy.

✘ Polynomial Interpolation in the
1950s by Panofsky with the
developments of computers

f observations

analysis

Space

The black dots denote the data points, while the
red curve shows the polynomial interpolation.
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Background
✘ An important step forward was made by Gilchrist and Cressman (1954),

who introduced the idea of using a previous numerical forecast to provide
a preliminary estimate of the analysis.

f observations

Space

background

✘ This prior estimate was called the background.
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Optimal interpolation
✘ Bergthorsson and Döös (1955) took the idea of using a background field a

step further by casting the analysis problem in terms of increments which
were added to the background.

f observation

background

Space

observation
increment

Space

δf
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Optimal interpolation
✘ Bergthorsson and Döös (1955) took the idea of using a background field a

step further by casting the analysis problem in terms of increments which
were added to the background.

f observation

background

Space

observation
increment

Space
increment
analysis

δf

✘ The increments were weighted linear combinations of nearby observation
increments (observation minus background), with the weights determined
statistically.
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Optimal interpolation
✘ Bergthorsson and Döös (1955) took the idea of using a background field a

step further by casting the analysis problem in terms of increments which
were added to the background.

f observation

analysis

background

Space

observation
increment

Space
increment
analysis

δf

✘ The increments were weighted linear combinations of nearby observation
increments (observation minus background), with the weights determined
statistically.

✘ This idea of statistical combination of background and synoptic
observations led ultimately to Optimal Interpolation.

✘ The use of statistics to merge model fields with observations is
fundamental to all current methods of analysis.
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Data Assimilation
✘ An important change of emphasis happened in the early 1970s with the

introduction of primitive-equation models.
✘ Primitive equation models support inertia-gravity waves. This makes them

much more fussy about their initial conditions than the filtered models that
had been used hitherto.

✘ The analysis procedure became much more intimately linked with the
model. The analysis had to produce an initial state that respected the
model’s dynamical balances.

✘ Unbalanced increments from the analysis procedure would be rejected as
a result of geostrophic adjustment.

✘ Initialisation techniques (which suppress inertia-gravity waves) became
important.
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Data Assimilation
The idea that the analysis procedure must present observational information to
the model in a way in which it can be absorbed (i.e. not rejected by geostrophic
adjustment) led to the coining of the term data assimilation.

Wiktionary: Assimilate
1. To incorporate nutrients into the body, especially after digestion.

➫ Food is assimilated and converted into organic tissue.
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Data Assimilation
The idea that the analysis procedure must present observational information to
the model in a way in which it can be absorbed (i.e. not rejected by geostrophic
adjustment) led to the coining of the term data assimilation.

Wiktionary: Assimilate
1. To incorporate nutrients into the body, especially after digestion.

➫ Food is assimilated and converted into organic tissue.

2. To incorporate or absorb knowledge into the mind.
➫ The teacher paused in their lecture to allow the students to assimilate what they had said.

3. To absorb a group of people into a community.
➫ The aliens in the science-fiction film wanted to assimilate human beings into their own race.

Our definition
✘ The process of objectively adapting the model state to observations in a

statistically optimal way taking into account model and observation errors
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Data Assimilation
✘ A final impetus towards the modern concept of data assimilation came

from the increasing availability of asynoptic observations from satellite
instruments.

✘ It was no longer sufficient to think of the analysis purely in terms of spatial
interpolation of contemporaneous observations.

✘ The time dimension became important, and the model dynamics assumed
the role of propagating observational information in time to allow a synoptic
view of the state of the system to be generated from asynoptic data.

✘ Example of satellite data
coverage in 6 hours
(AMSU-A data).
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Elementary Statistics
Problem
Suppose we want to estimate the body temperature of a person, given:

✘ A prior estimate: Tb.
✘ A thermometer: To.
✘ The true (unknown) body temperature Tt .

Errors
✘ The errors in Tb and To are:

εb = Tb−Tt

εo = To−Tt

✘ εb and εo are random variables (or stochastic variables)
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Elementary Statistics
Hypotheses

✘ We will assume that the error statistics of Tb and To are known.

Possible values

Error distribution
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Elementary Statistics
Hypotheses

✘ We will assume that the error statistics of Tb and To are known.

Possible values

Error distribution

✘ We will assume that Tb and To have been adjusted (bias corrected) so that
their mean errors are zero:

εb = εo = 0 .

✘ There is usually no reason for εb and εo to be connected in any way:

εoεb = 0 .

✘ The quantity εoεb represents the covariance between the error of our prior
estimate and the error of our thermometer measurement.
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Elementary Statistics
✘ We estimate the body temperature as a linear combination of Tb and To:

Ta = αTo +βTb + γ
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Elementary Statistics
✘ We estimate the body temperature as a linear combination of Tb and To:

Ta = αTo +βTb + γ

✘ Denote the error of our estimate as εa = Ta−Tt .
✘ We have:

Ta = Tt + εa = α
(
Tt + εo

)
+β

(
Tt + εb

)
+ γ

or εa = (α+β−1) Tt +α εo +β εb + γ
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Elementary Statistics
✘ We estimate the body temperature as a linear combination of Tb and To:

Ta = αTo +βTb + γ

✘ Denote the error of our estimate as εa = Ta−Tt .
✘ We have:

Ta = Tt + εa = α
(
Tt + εo

)
+β

(
Tt + εb

)
+ γ

or εa = (α+β−1) Tt +α εo +β εb + γ

✘ We want the estimate to be unbiased: εa = 0:

εa = (α+β−1)Tt + γ = 0

✘ Since this holds for any Tt , we must have
➫ γ = 0 and α+β−1 = 0.

✘ Then
Ta = αTo +(1−α)Tb
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Elementary Statistics
✘ The general Linear Unbiased Estimate is:

Ta = αTo +(1−α)Tb

✘ Now consider the error of this estimate.
✘ Subtracting Tt from both sides of the equation gives

εa = α εo +(1−α) εb
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Elementary Statistics
✘ The general Linear Unbiased Estimate is:

Ta = αTo +(1−α)Tb

✘ Now consider the error of this estimate.
✘ Subtracting Tt from both sides of the equation gives

εa = α εo +(1−α) εb

T
b

T
o T

b
T

oT
b

T
o

α=1 α=0α

?
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Elementary Statistics
✘ The general Linear Unbiased Estimate is:

Ta = αTo +(1−α)Tb

✘ Now consider the error of this estimate.
✘ Subtracting Tt from both sides of the equation gives

εa = α εo +(1−α) εb

✘ The variance of the estimate is:

ε2
a = α

2
ε2

o +2α (1−α) εoεb +(1−α)2
ε2

b

✘ With the previous hypothesis εoεb = 0:

ε2
a = α

2
ε2

o +(1−α)2
ε2

b
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Elementary Statistics

ε2
a = α

2
ε2

o +(1−α)2
ε2

b

We can easily derive some properties of our estimate:

✘
dε2

a

dα
= 2αε2

o−2 (1−α)ε2
b

✘ For α = 0, ε2
a = ε2

b and dε2
a

dα
=−2ε2

b < 0

✘ For α = 1, ε2
a = ε2

o and dε2
a

dα
= 2ε2

o > 0

α
0 0.2 0.4 0.6 0.8 1

ε2
a

From this we can deduce:
✘ For 0≤ α≤ 1, ε2

a ≤max(ε2
b,ε

2
o)

✘ The minimum-variance estimate occurs for α ∈ (0,1).

✘ The minimum-variance estimate satisfies ε2
a <min(ε2

b,ε
2
o) , which means

it is lower than the variance of each piece of information.
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Elementary Statistics
The minimum-variance estimate occurs when

d ε2
a

dα
= 2α ε2

o −2(1−α) ε2
b = 0

⇒ α =
ε2

b

ε2
b + ε2

o

.

It is not difficult to show that the error variance of this minimum-variance
estimate is:

1

ε2
a

=
1

ε2
b

+
1

ε2
o

,

and the analysis is:
Ta

ε2
a

=
Tb

ε2
b

+
To

ε2
o

.
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A Covid story - Part 2

Forehead 37.5◦C

Armpit L - T1 36.0◦C
36.3◦C

Armpit R - T1 36.2◦C
36.2◦C

Armpit L - T2 36.1◦C
36.2◦C

Armpit R - T2 35.9◦C
36.0◦C

Armpit L - T3 · · ·◦C
· · ·◦C

Armpit R - T3 · · ·◦C
· · ·◦C
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Extension to Multiple Dimensions
✘ Now, let’s turn our attention to the multi-dimensional case.
✘ Instead of a scalar prior estimate Tb, we now consider a vector xb.
✘ We can think of xb as representing the entire state of a numerical model at

some time.
✘ The elements of xb might be grid-point values, spherical harmonic

coefficients, etc., and some elements may represent temperatures,
humidity, others wind components, etc.

✘ We refer to xb as the background.
✘ Similarly, we generalise the observation to a vector y.
✘ y can contain a disparate collection of observations at different locations,

and of different variables.
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Extension to Multiple Dimensions
✘ The major difference between the simple scalar example and the

multi-dimensional case is that there is no longer a one-to-one
correspondence between the elements of the observation vector and
those of the background vector.

x→ ← y
✘ It is no longer trivial to compare observations and background.
✘ When the background is a state of a numerical model at some time

➫ Observations are not necessarily located at model gridpoints
➫ The observed variables (e.g. radiances) may not correspond directly with any of the

variables of the model.
➫ To overcome this problem, we must assume that our model is a more-or-less

complete representation of reality, so that we can always determine “model
equivalents” of the observations.

©ECMWF 21 / 40
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Extension to Multiple Dimensions
✘ We formalise this by assuming the existence of an observation operator,

H .
✘ Given a model-space vector, x, the vector H (x) can be compared directly

with y, and represents the “model equivalent” of y.

x
H (·)−−→H (x)→ ← y

✘ For now, we will assume that H is perfect. I.e. it does not introduce any
error, so that:

H (xt) = yt

where xt is the true state, and yt contains the true values of the observed
quantities.

©ECMWF 22 / 40
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Extension to Multiple Dimensions
✘ As we did in the scalar case, we will look for an analysis that is a linear

combination of the available information:

xa = Fxb +Ky+c

where F and K are matrices, and where c is a vector.
✘ If H is linear, we can proceed as in the scalar case and look for a linear

unbiased estimate.
✘ In the more general case of nonlinear H , we will require that error-free

inputs (xb = xt and y = yt) produce an error-free analysis (xa = xt):

xt = Fxt +KH (xt)+c

✘ Since this applies for any xt , we must have c = 0 and

I≡ F+KH (·) or F≡ I−KH (·)

✘ Our analysis equation is thus:

xa = xb +K (y−H (xb))
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Extension to Multiple Dimensions

xa = xb +K (y−H (xb))

✘ Remember that in the scalar case, we had

Ta = αTo +(1−α)Tb

= Tb +α(To−Tb)

✘ We see that the matrix K plays a role equivalent to that of the coefficient α.
✘ K is called the gain matrix.
✘ It determines the weight given to the innovation y−H (xb)
✘ It handles the transformation of information defined in “observation space”

to the space of model variables.
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Extension to Multiple Dimensions
✘ The next step in deriving the analysis equation is to describe the statistical

properties of the analysis errors.
✘ We define

εa = xa−xt

εb = xb−xt

εo = y−yt

✘ We will assume that the errors are small, so that

H (xb) = H (xt)+H εb +O( ε
2
b )

where H is the Jacobian of H (if H is nonlinear).
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Extension to Multiple Dimensions
✘ Substituting the expressions for the errors into our analysis equation, and

using H (xt) = yt , gives (to first order):

εa = εb +K
(

εo −H εb
)

✘ As in the scalar example, we will assume that the mean errors have been
removed, so that εb = εo = 0. We see that this implies that εa = 0.

✘ In the scalar example, we derived the variance of the analysis error, and
defined our optimal analysis to minimise this variance.

✘ In the multi-dimensional case, we must deal with covariances.
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Covariance
✘ The covariance between two variables xi and xj is defined as

cov(xi,xj) = (xi− xi)(xj− x j)

✘ Given a vector x = (x1,x2, · · · ,xN)
T, we can arrange the covariances into a

covariance matrix, C, such that Cij = cov(xi,xj).
✘ Equivalently:

C = (x−x)(x−x)T

✘ Covariance matrices are symmetric and positive definite
➫ symmetric: CT = C
➫ positive definite: zT Cz is positive for every non-zero vector z
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Extension to Multiple Dimensions
✘ The analysis error is:

εa = εb +K
(

εo −H εb
)

= (I−KH) εb +K εo
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Extension to Multiple Dimensions
✘ The analysis error is:

εa = εb +K
(

εo −H εb
)

= (I−KH) εb +K εo

✘ Forming the analysis error covariance matrix gives:

εaεT
a =

[
(I−KH) εb +K εo

][
(I−KH) εb +K εo

]T

= (I−KH) εbεT
b
(I−KH)T

+ K εoεT
o KT

+ K εoεT
b
(I−KH)T+(I−KH) εbεT

o KT

✘ Assuming that the background and observation errors are uncorrelated

(i.e. εoεT
b
= εbεT

o = 0), we find:

εaεT
a = (I−KH) εbεT

b
(I−KH)T+K εoεT

o KT
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Extension to Multiple Dimensions

εaεT
a = (I−KH) εbεT

b
(I−KH)T+K εoεT

o KT

✘ This expression is the equivalent of the expression we obtained for the
error of the scalar analysis:

ε2
a = (1−α)2

ε2
b +α

2
ε2

o

= (1−α) ε2
b (1−α)+α ε2

o α

✘ Again, we see that K plays essentially the same role in the
multi-dimensional analysis as α plays in the scalar case.

✘ In the scalar case, we chose α to minimise the variance of the analysis
error.

✘ What do we mean by the minimum-variance analysis in the
multi-dimensional case?
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Extension to Multiple Dimensions
✘ Note that the diagonal elements of a covariance matrix are variances

Cii = cov(xi,xi) = (xi− xi)2.
✘ Hence, we can define the minimum-variance analysis as the analysis that

minimises the sum of the diagonal elements of the analysis error
covariance matrix.

✘ The sum of the diagonal elements of a matrix is called the trace.

✘ In the scalar case, we found the minimum-variance analysis by setting dε2
a

dα

to zero.
✘ In the multidimensional case, we are going to set

∂trace(εaεT
a)

∂K
= 0

✘ Note:
∂trace(εaεT

a)

∂K
is the matrix whose ij th element is

∂trace(εaεT
a)

∂Kij
.
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Extension to Multiple Dimensions
✘ We have: εaεT

a = (I−KH) εbεT
b
(I−KH)T+K εoεT

o KT.

✘ The following matrix identities come to our rescue:

∂trace(KAKT)

∂K
= K(A+AT)

∂trace(KA)
∂K

= AT

∂trace(AKT)

∂K
= A

✘ Applying these to ∂trace(εaεT
a)/∂K gives:

∂trace( εaεT
a )

∂K
= 2K

[
H εbεT

b
HT+ εoεT

o

]
−2 εbεT

b
HT = 0

✘ Hence: K = εbεT
b

HT
[
H εbεT

b
HT+ εoεT

o

]−1
.
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Extension to Multiple Dimensions

K = εbεT
b

HT
[
H εbεT

b
HT+ εoεT

o

]−1

✘ This optimal gain matrix is called the Kalman Gain Matrix.
✘ Note the similarity with the optimal gain we derived for the scalar analysis:

α = ε2
b

[
ε2

b + ε2
o

]−1

✘ The variance of analysis error for the optimal scalar problem was:

1

ε2
a

=
1

ε2
b

+
1

ε2
o

✘ The equivalent expression for the multi-dimensional case is:[
εaεT

a

]−1
=
[

εbεT
b

]−1
+HT

[
εoεT

o

]−1
H
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Notation
✘ The notation we have used for covariance matrices can get a bit

cumbersome.
✘ The standard notation is:

Pa ≡ εaεT
a

Pb ≡ εbεT
b

R ≡ εoεT
o

✘ In many analysis schemes, the true covariance matrix of background error,
Pb, is not known, or is too large to be used.

✘ In this case, we use an approximate background error covariance matrix.
This approximate matrix is denoted by B.
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Alternative Expression for the Kalman Gain
Finally, we derive an alternative expression for the Kalman gain:

K = PbHT [HPbHT+R
]−1

Multiplying both sides by
[
Pb−1

+HTR−1H
]

gives:[
Pb−1

+HTR−1H
]

K =
[
HT+HTR−1HPbHT][HPbHT+R

]−1

= HTR−1
[
R+HPbHT][HPbHT+R

]−1

= HTR−1

Hence:

K =
[
Pb−1

+HTR−1H
]−1

HTR−1

✘ Expression 1: need the inverse of a matrix of dimension size(R)
✘ Expression 2: need the inverse of a matrix of dimension size(Pb)
✘ Remember that xa = xb +K (y−H (xb))
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Optimal Interpolation
✘ Optimal Interpolation is a statistical data assimilation method based on the

multi-dimensional analysis equations we have just derived.
✘ The Kalman gain K can not be computed because of the size of Pb and R
✘ The basic idea is to split the global analysis into a number of boxes which

can be analysed independently:

x(i)
a = x(i)

b +K(i)
[
y(i)−H (i)(xb)

]
where

xa =


x(1)

a

x(2)
a
...

x(M)
a

 xb =


x(1)

b

x(2)
b
...

x(M)
b

 K =


K(1)

K(2)

...
K(M)



x(1)a x(2)a

x(i)a x(i+1)
a

✘ The method was used operationally at ECMWF from 1979 until 1996,
when it was replaced by 3D-Var.
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Optimal Interpolation

x(i)
a = x(i)

b +K(i)
(

y(i)−H (i)(xb)
)

✘ In principle, we should use all available observations to calculate the
analysis for each box. However, this might be too expensive.

✘ To produce a computationally-feasible algorithm, Optimal Interpolation (OI)
restricts the observations used for each box to those observations which
lie in a surrounding selection area:

Analysis box

Observations
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Optimal Interpolation

x(i)
a = x(i)

b +K(i)
(

y(i)−H (i)(xb)
)

✘ In principle, we should use all available observations to calculate the
analysis for each box. However, this might be too expensive.

✘ To produce a computationally-feasible algorithm, Optimal Interpolation (OI)
restricts the observations used for each box to those observations which
lie in a surrounding selection area:

Analysis box

Selection area

Used observations

Rejected observations
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Optimal Interpolation
✘ The gain matrix used for each box is:

K(i) =
(
PbHT)(i)[(HPbHT)(i)+R(i)

]−1

✘ Now, the dimension of the matrix
[(

HPbHT
)(i)

+R(i)
]

is equal to the
number of observations in the selection box.

✘ Selecting observations reduces the size of this matrix, making it feasible to
use direct solution methods to invert it.

✘ Note that to implement Optimal Interpolation, we have to specify
(
PbHT

)(i)
and

(
HPbHT

)(i)
. This effectively limits us to very simple observation

operators, corresponding to simple interpolations.
✘ This, together with the artifacts introduced by observation selection, was

one of the main reasons for abandoning Optimal Interpolation in favour of
3D-Var.
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Summary
✘ We derived the linear analysis equation for a simple scalar example.

✘ We showed that a particular choice of the weight α given to the
observation resulted in an optimal minimum-variance analysis.

✘ We repeated the derivation for the multi-dimensional case. This required
the introduction of the observation operator.

✘ The derivation for the multi-dimensional case closely parallelled the scalar
derivation.

✘ The expressions for the gain matrix and analysis error covariance matrix
were recognisably similar to the corresponding scalar expressions.

✘ Finally, we considered the practical implementation of the analysis
equation, in an Optimal Interpolation data assimilation scheme.
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