Microwave observations (part 2): cloud and precipitation; applications

Alan Geer

EUMETSAT/ECMWF NWP-SAF satellite data assimilation training course, 15 – 19 May 2023

© ECMWF May 18, 2023

Scattering radiative transfer

Radiative transfer: window channels (ignoring scattering)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Schwarzchild's equation

Adding scattering

Change in coordinates: optical depth

Change in optical depth $d\tau$ in a non-scattering atmosphere

Change in optical depth $d\tau$ including extinction by scattering

$$d\tau = -\beta_a ds$$

$$d\tau = -(\beta_a + \beta_s)ds = -\beta_e ds$$

The full scattering radiative transfer equation

- Without scattering, just integrate this equation along the path travelled by the radiation (Tony's first lecture)
- With scattering, this can be complex to solve:
 I(Ω), the radiance in one direction, depends on radiance from all other directions: I(Ω')
 and all levels depend on each other

Radiative transfer: window channels (ignoring scattering)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Radiative transfer: window channels (with scattering)

Strong scattering at 91 GHz

Reverse Monte-Carlo radiative transfer solver

The full scattering radiative transfer equation

Cloud effects in observations

© ECMWF May 18, 2023

Observed TB [K]

Effect of hydrometeors in microwave sounding channels

Effect of hydrometeors in microwave sounding channels

Cloud (absorption, increases TB) Cloud and rain (absorption, pushes up weighting function altitude, decreases TB) Cloud and snow/ice/graupel (absorption and scattering, decreases TB) -10

-15

-20

The full scattering radiative transfer equation

Gas absorption: the microwave spectrum

Geer et al. (2021, GMD, Bulk hydrometeor optical properties for microwave and sub-millimetre radiative transfer in RTTOV-SCATT v13.0)

Absorption in pure water or ice

Effect of hydrometeors – particles

• 30 GHz frequency \leftrightarrow 10mm wavelength (λ)

x << 1: Rayleigh scattering

 $x \sim 1$: Mie sphere, discrete dipole approximation, etc.

x >> 1: Geometric optics

Particle type	Size range, r	Size parameter, x
Cloud droplets	5 – 50 µm	0.003 - 0.03
Drizzle	~100 µm	0.06
Rain drop	0.1 – 3 mm	0.06 - 1.8
Ice crystals	10 – 100 µm	0.006 - 0.06
Snow	1 – 10 mm	0.6 - 6
Hailstone	~10 mm	6

- Effect of particles on radiation is a function of the particle shape and structure, size relative to the radiation, and composition (complex refractive index / permittivity)
- Bulk effect of particles is an integral over the particle size distribution (PSD)

Optical properties of hydrometeors in RTTOV-SCATT: at 183 GHz

Lookup tables for snow hydrometeors as a function of snow water content

 $\beta_e = \beta_a + \beta_s$

Bulk extinction coefficient scaled relative to a large plate aggregate

Optical properties of hydrometeors in RTTOV-SCATT: across frequencies

Lookup tables for snow hydrometeors of water content 10^-4 kg/m^3 as a function of frequency

(d)

Hydrometeor	Scattering	Particle shape	PSD				
placeholder	type			MGD parameters			
				N ₀	μ	Λ	γ
Rain	Mie	sphere	MGD	8×10^{6}	0	free	1
Snow	ARTS	large plate aggregate	F07 T	-	-	-	-
Graupel	ARTS	column	F07 T	-	_	-	-
Cloud water	Mie	sphere	MGD	free	2	2.13×10^{5}	1
Cloud ice	ARTS	large column aggregate	MGD	free	0	1×10^4	1

Geer et al. (2021, GMD)

Cloud and precipitation optical properties: the microwave spectrum

Geer et al. (2021, GMD)

The full scattering radiative transfer equation

Fast approximate solver: RTTOV-SCATT

• For each hydrometeor type (e.g. cloud, rain etc.), compute single-species bulk optical properties as a function of mixing ratio

- Sum up single-species optical properties along with gas optical properties
- Assume a simplified scattering phase-function
- Assume no azimuth dependence of the radiance field
- Assume radiance is a simple function of zenith angle (theta): $I = I_0 + I_1 \cos \theta$ (Eddington approximation, similar to the two-stream approach)
- delta-scaling (treat sharp peaks in the scattering phase function as no scattering at all)
- Set up coupled equations describing radiance all levels simultaneously; solve using matrix algebra for the approximate radiance field *I* at each level
- Integrate the radiative transfer equation along the line of sight, using the delta-Eddington solution to provide the 'source terms'

$$\frac{dI(\widehat{\Omega})}{d\tau} = I(\widehat{\Omega}) - (1 - \omega_s)B - \frac{\omega_s}{4\pi} \int_{4\pi} P(\widehat{\Omega}, \widehat{\Omega}')I(\widehat{\Omega}') d\widehat{\Omega}'$$

Applications

(depending on time available)

Rough timeline of satellite microwave data assimilation in 'atmospheric' DA

All-sky assimilation

© ECMWF May 18, 2023

- Clear-sky assimilation:
- Clear-sky or all-sky?
- Remove any cloud-contaminated observations
- Do not model the effect of cloud on brightness temperatures
- Traditionally used for temperature sounding channels (e.g. AMSU-A channel 5)
- Extract small signals of temperature forecast errors (order 0.1K) that would be swamped by errors from displaced clouds and precipitation (10-100K)
- All-sky assimilation
 - Model the effect of cloud and precipitation on the observations
 - Assimilate all data, whether clear, cloudy or precipitating
 - Initially developed for water-vapour sounding and imaging channels, but now also applied to temperature-sounding channels
 - Use the tracing mechanism of 4D-Var to infer the dynamical state from errors in the location/intensity of water vapour, cloud and precipitation
- Broadly, the clear-sky approach is now outdated at microwave frequencies
 - At ECMWF, all but a handful of microwave sensors are now assimilated in all-sky conditions
 - Broadly, going to all-sky assimilation doubles the impact of a sensor (ECMWF TM 741, 2014)

1-Apr-2023 to 30-Apr-2023

METOP-B AMSUA Radiances All-sky NOAA 18 AMSUA Radiances All-sky NOAA 19 AMSUA Radiances All-sky NPP ATMS Radiances NOAA 15 AMSUA Radiances All-sky METOP-C AMSUA Radiances All-Sky NOAA 20 ATMS Radiances DMSP 18 SSMIS Radiances All-sky MHS NOAA 19 MHS Radiances All-sky MHS METOP-C MHS Radiances All-sky FY-3C MWHS2 Radiances All-sky GPM GMI Radiances All-sky GCOM-W1 AMSR-2 Radiances All-sky NPP ATMS Radiances MHS METOP-B MHS Radiances All-sky NOAA 20 ATMS Radiances FY-3D MWHS2 Radiances All-sky DMSP 17 SSMIS Radiances All-sky FY-3E MWHS2 Radiances All-sky **AOUA AIRS Radiances** NOAA 20 CRIS Radiances **NPP CRIS Radiances** METOP-C IASI Radiances METOP-B IASI Radiances AQUA AIRS Radiances NOAA 20 CRIS Radiances METEOSAT 9 GEOS Allsky Radiances **GOES 16 GEOS Radiances GOES 18 GEOS Radiances** METEOSAT 10 GEOS Allsky Radiances Himawari 9 GEOS radiances METOP-C IASI Radiances METOP-B IASI Radiances

Impact (FSOI) of satellite radiances at ECMWF on short-range forecast, by sensor (100% = all obs)

All-sky microwave imagers: a unique contribution from precipitationaffected observations

Microwave imagers give their largest forecast impact from a small fraction of precipitating scenes.

Parameter estimation for 6 macro- and microphysical variables

Geer (2021, AMT): Physical characteristics of frozen hydrometeors inferred using parameter estimation

7. Rain gauge

8. Ground radar

All-sky all-surface assimilation

© ECMWF May 18, 2023

Information content: window (i.e. surface sensitive) channels

Developments for surface-sensitive microwave channels in cycle 48r1 (June 2023)

adding higher latitudes, land surfaces, mixed scenes (land – water) (but excluding sea-ice, snow, high altitudes, desert soils)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

For cycle 49r1 (June 2024?)– assimilation of microwave imagers over sea ice

- Offline hybrid machine learning data assimilation technique to create a surface emissivity model for sea ice, driven by a set of "empirical state" variables describing unknown aspects of the sea ice surface (grain size, ice age, wetness, etc.)
- In ECMWF 4D-Var use the empirical surface emissivity model with an observation space "sink variable" to estimate the sea ice fraction and the empirical state.
 - Water vapour, cloud and precipitation signal above the sea ice is also used
 - Significant improvement in southern ocean forecasts (T, wind) from being able to assimilate observations over ocean but in close proximity to sea ice

Rapid freeze-up: sea ice fraction - 7th Nov 2020

IFS sea-ice patterns do eventually catch up with AMSR2 retrievals after 2-3 days

Antarctic example – sea ice fraction 7th August 2020

IFS sea ice concentration at AMSR2 locations

12Z 2-Dec-2020

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

AMSR2 sink variable sea ice concentration

12Z 2-Dec-2020

AMSR2 sea ice fraction vs OLCI image: A68A iceberg

AMSR2

1 pixel ~ 40x40 km

12Z 4th Dec 2020

OLCI channel 10 (681 nm)

Rough timeline of satellite microwave data assimilation in 'atmospheric' DA

	Assimilate retrievals	Assimilate radiances		
Temperature				
Humidity				
Surface windspe	ed			
Cloud and precipitation				
Sea ice				
Skin temperature Soil moisture, sn Vegetation	e ow			
	direct assim (late 1	radiance ilation 990s)	all-sky radiance assimilation (~2010)	all-sky all-surface radiance assimilation (2025)

Questions?

