
© ECMWF May 15, 2023

The detection and assimilation of 
cloud-affected infrared satellite 
radiances

ECMWF/EUMETSAT NWP-SAF Satellite Data Assimilation 

Training Course 

15-19 May 2023

Tony McNally, Reima Eresmaa, Chris Burrows

chris.burrows@ecmwf.int



October 29, 2014

Outline

• The effect of cloud on infrared radiances

• Cloud detection/rejection methods:

• simple departure checks

• co-located imager information

• pattern recognition

• hybrid approach

• machine learning

• “All-sky” infrared assimilation:

• simplified approach

• recent progress 
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The detection and assimilation of clouds in IR radiances
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Cloud at 200hPa

Cloud at 500hPa

Cloud at 400hPa

No Cloud

IR spectra with (and without) clouds

Channels 

sensitive to the 

surface in clear 

scenes.

Same channels 

are strongly 

sensitive to 

cold high 

clouds!

Clouds have a very strong 

impact on infrared radiance 

measurements!

And data assimilation methods 

cannot easily handle these 

nonlinear effects.
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Big question: How should we handle clouds 

when assimilating infrared radiance 

observations??

• Option 1: detect and reject cloud-

contaminated observations.

• Option 2: Explicitly estimate cloud 

parameters from the radiances within the 

data assimilation (T, Q, O3 etc)
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It is not trivial to get the cloud detection right in 
some IR sounder footprints

There is a “grey zone” where radiative effect of cloud is 

comparable with meteorological signals we’re looking for. 

Care is needed here, or the analysis can be degraded!

Thick cloud: 
easily detected

Subtle cloud cover: 
difficult to detect
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Note!

For this section, most simulated observations use 
cloud-free model information.

So, cloudy scenes in the observations will (in 
general) look colder than the model equivalents.
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Cloud detection methods 

• Window channel departure (O-B) checks

• Co-located imager checks

• Pattern recognition algorithms

• Hybrid systems 

Simple

Complex
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Window channels have the highest 

sensitivity to cloud

This is the 

classic spectral 

signature of the 

presence of 

cloud.
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Observed radiance at 11 μm minus radiance 

calculated from background in clear sky (K)

Clear population
Cold departures 

indicating cloud 

contamination in obs. 

The “cold tail”.

Histogram of O-B



October 29, 2014

Simple window channel departure check

RT operator

∆𝐵𝑇𝑡ℎ𝑟𝑒𝑠ℎ1 < 𝑦𝑜𝑏𝑠 −𝐻 𝑥𝑐𝑙𝑒𝑎𝑟 < ∆𝐵𝑇𝑡ℎ𝑟𝑒𝑠ℎ2
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Removes most cloud-affected obs. However.....

• Some cloud contamination remains in the “grey zone”.

• The resulting histogram is very non-Gaussian.

• Clear data from high-peaking channels are rejected.

Simple window channel departure check
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Cloud detection methods 

• Window channel departure (O-B) checks

• Co-located imager checks

• Pattern recognition algorithms

• Hybrid systems 

Simple

Complex
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AVHRR (or VIIRS) imager pixels

~1 km

IASI (or CrIS) field 

of view ~10 km
Co-located imager 
checks: the value of 
high spatial resolution

EUMETSAT
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Homogenous clear

(high mean, low variance)

Homogenous cloudy

(low mean Tb, low variance)

Mixed cloud scene

(any mean, high variance)

We can evaluate the mean and variance of Tb imager 

values inside the sounder field of view
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Scatter plot of variance of AVHRR imager pixels within 

the IASI footprint versus mean brightness temperature
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Where would               ,              , and 

be in this scatter plot ?
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More sophisticated: image clustering

Use of clustered 
imager Tb statistics Clusters

Overall
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Clusters of 
cloudy pixels

Clusters

Overall

Use of clustered 
imager Tb statistics

More sophisticated: image clustering
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Cloud detection methods 

• Window channel departure (O-B) checks

• Co-located imager checks

• Pattern recognition algorithms

• Hybrid systems 

Simple

Complex
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Pattern recognition algorithms

If channels are sensitive only to 

the atmosphere above a cloud 

(black lines), we would like to 

keep this data.

So here, we only reject cloud-

contaminated channels (red lines), 

and keep the rest!

McNally & Watts 2003, https://doi.org/10.1256/qj.02.208

https://doi.org/10.1256/qj.02.208
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How do we do this??

Simulated Clear spectrum

Simulated Cloudy spectrum

Let’s zoom into the long-wave part of the 

spectrum which has good vertical resolution
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Simulated Clear spectrum

Simulated Cloudy spectrum

Strat.

Trop.

Surface
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Break point
Simulated Clear spectrum

Simulated Cloudy spectrum

Strat.

Trop.

Surface
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Cloud at 200hPa

Cloud at 500hPa

Cloud at 400hPa

No Cloud

Break point depends on cloud height …
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Break point depends on cloud height …

Cloud at 200hPa

Cloud at 500hPa

Cloud at 400hPa

No Cloud

... so we need to find it 

separately at each situation

However, the spectra are spiky – the 

peak height of the channels do not vary 

monotonically with channel number, so 

we need to order them.
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Vertically ranked channel index

• First we compute the observations minus (clear-sky) simulations.

• Then re-order (rank) the channels according to their height of cloud 

sensitivity.

High-peaking channels:

obs match clear-sky simulations.

Low-peaking channels:

obs do not match clear-sky 

simulations – must be cloudy!
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… then we apply a low-pass filter to reduce the 

effect of noise …
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Monotonic downward 

gradient in filtered 

values

… then we find the break point according to 

some determined thresholds ... 
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Channels retained
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… and finally we set flags to indicate cloud-

affected channels

Channels rejected 👍
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CrIS channel at 14.2 mm

(peak pressure 350 hPa)

CrIS channel at 13.6 mm

(peak pressure 600 hPa)
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Cloud detection methods 

• Window channel departure (O-B) checks

• Co-located imager checks

• Pattern recognition algorithms

• Hybrid systems 

Simple

Complex
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Difficult scenes

The radiances are contaminated by 

cloud (cold 5K) compared to the 

clear sky value. 

But our computation of the clear 

sky value from the background is 

also cold by 5K due to an error in 

the surface skin temperature. 

→ Checking against the 

background provides no reason to 

reject the observation and it is 

passed as clear!  surface

Cloud signal -5K

Model Surface error -5K

Consider this plausible situation when trying to assimilate a surface-sensitive 

infrared channel.
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Cloud detection can fail in the presence 

of background error!

0 K -5 K

5 K DTb = -5 K DTb = -10 K

0 K DTb = 0 K DTb = -5 K

-5 K DTb = 5 K DTb = 0 K

Cloud effect

Background 

error

Missed cloud

False alarm
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The ECMWF implementation is a hybrid scheme that 

combines the use of co-located imager data with 

departure-based pattern recognition.

This is complementary and helps to prevent the 

misidentification of cloud.

See Eresmaa (2014) QJRMS 140, 2342-2352 for details
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Can machine learning help us?
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Approach – train a NN to replicate the flags from the ECMWF hybrid cloud detection 

scheme, but using only observed IASI values as inputs

Observed 

IASI spectra

Simulated 

IASI spectra

McNally/Watts 

algorithm

Cloud flags for 

each channel

Observed 

IASI spectra

“Labels”

Train a neural 

network to 

estimate the 

cloud flags 

given only the 

observed IASI 

spectra

McNally A, Watts P. 2003. A cloud detection algorithm for high-spectral-resolution infrared sounders. 

Q. J. R. Meteorol. Soc. 129: 3411– 3423, doi: 10.1256/qj.02.208
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Histograms of observations minus simulations for a few channels

• The ‘all’ (blue) line shows both clear 

and cloudy obs (note the cold tails).

• The ‘ops’ (orange) line shows the 

cloud-free sample using the 

operational  cloud detection scheme.

• The ‘ml’ (green) line shows the cloud-

free sample from the neural network.

• We want machine-learning 

statistics, ‘ml’ (green) to match the 

operational statistics, ‘ops’ 

(orange). 

• Generally, the agreement is very good 

and importantly, the cold tails are 

mostly removed.

• The window channel (861.5 cm-1) 

shows the worst agreement, with 

significant broadening. 

648.75cm-1648.75 cm-1 713.5 cm-1

861.5 cm-1 1367 cm-1
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Initial fit looks fairly good, even with a limited training set
Yellow is cloudy, blue is clear

Physically-

based 

method

Neural 

network

Higher-peaking Lower-peaking
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Big question: How should we handle clouds 

when assimilating infrared radiance 

observations??

• Option 1: detect and reject cloud-

contaminated observations.

• Option 2: Explicitly estimate cloud 

parameters from the radiances within the 

data assimilation (T, Q, O3 etc)
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This “all-sky” approach will allow us 

to use more data!

Window channels get used less than 

20% of the time due to cloud-detection
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“All-sky” assimilation: the cost function J(x)

model state

observations

background error

covariance

observation error

covariance

observation operator 

(maps the model state to the 

observation space)

If we wish to assimilate cloudy radiance observations ….. 
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model state must include clouds (clw,cic,cf)

The cost function J(x)
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Background error covariance must include clouds (clw,cic,cf)

The cost function J(x)
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Observation operator (RT and Model)  must include clouds (clw,cic,cf)

The cost function J(x)
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Note!

Unlike the first section, we are now 
simulating cloud-affected radiances.
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Potential difficulties in practice

• The cloud uncertainty in radiance terms may be several orders of 

magnitude larger than the T and Q signal (i.e. 10s of kelvin compared to 

0.1s of kelvin).

• Background errors may be difficult to quantify and model for cloud 

parameters.

• Conflict between having enough cloud variables for an accurate RT 

calculation while limiting the number of cloud variables to those that can 

be uniquely estimated in the analysis from the observations.

• The radiance response to cloud changes is highly non-linear.
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surfacesurface

dR/dT500 = 0

dR/dT* = 1

dR/dT500 = 1

dR/dT* = 0

Weighting Functions in clear and 

cloudy sky
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Two approaches to assimilate cloud- affected 

infrared radiances

Simplified system:
• 2-parameter cloud representation

• Currently only fully overcast scenes are 

assimilated this way

• No background cloud information taken from 

the NWP model

• No interaction with NWP model via physics

• The retrieved cloud information is discarded

Advanced system:
• Cloud variables on model levels

• Aim to assimilate all cloud conditions

• Background cloud information is taken from 

the NWP model

• Back interaction with NWP model via physics

X=(T,Q,V,ciw,clw,cc)

X=(T,Q,V,cp,cf)

cp

cf
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Simplified system

model state has only one extra variable = cloud top height

See McNally (2009) QJRMS 135, 1214-1229 for more details… 

The additional cloud parameter is known as a “sink” variable. It is used in 

order to allow the assimilation of overcast radiances, but its retrieved cloud 

variables are not used by the model.
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Towards an Advanced Cloudy IR Radiance Assimilation (“all sky” IR)
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Towards an Advanced Cloudy IR 

Radiance Assimilation

(T,Q,V)

model 

physics (M)

(T,Q,V,ciw,clw,cc)

Cloudy

(RT)

(Rcal)

Jo=(Robs-Rcal)

Cloudy

(RT) *

model 

physics (M*)

(T,Q,V,ciw,clw,cc)*

(T,Q,V)*

(Rcal)*

We simulate cloudy radiances 

Rcal via a chain of forward 

operators (M,RT). 

We compute the fit of the 

analysis to the observations 

(Jo)

We minimize Jo by perturbing 

the analysis variables 

according to gradients from a 

chain of adjoint operators

(RT*,M*)



October 29, 2014

Recent progress:
• Improved cloudy background via increased NWP resolution and 

sophisticated physical modelling of clouds.

• Accounting for scattering effects in radiative transfer calculation.

• Representation of ice cloud optical properties.

• Efficient modelling of overlapping cloud layers.

• Situation-dependent observation error specification.

→ Promising results from the use of humidity-sensitive IR radiances in 

the microwave “all-sky” framework.

Recent review on all-sky IR progress: https://doi.org/10.1007/s00376-021-1088-9

https://doi.org/10.1007/s00376-021-1088-9
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Questions ?



Situation-dependent observation 

error model

Observation error 

correlation in clear-sky 

conditions

Observation error 

correlation in fully cloudy 

conditions
Channel index
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Low-peaking

channel, using 

clear data only

High-peaking

channel, using 

clear data only

Any WV channel, 

using clear and 

cloudy data

Active data count in “clear-sky” 

vs “all-sky” use of IR radiances



Adding seven humidity-

sensitive IASI channels 

when clear or cloudy

Adding seven humidity-

sensitive IASI channels 

when clear

The two systems produce 

comparable forecast impacts
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The ECMWF implementation is a hybrid scheme 

that combines the use of co-located imager data 

with departure-based pattern recognition

See Eresmaa (2014) QJRMS 140, 2342-2352 for details

Using departures only

Using 
imager 

only

Clear Cloudy Total

Clear 5.2% 3.4% 8.6%

Cloudy 5.5% 85.9% 91.4%

Total 10.7% 89.3% 100.0%


