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Vilhelm Bjerknes (1862-1951)

“Founding father of modern
weather forecasting”

Norwegian physicist who
proposed weather forecasting as
a deterministic initial value
problem based on the laws of
physics




Lewis Fry Richardson (1881-1953)

English scientist who produced the
first numerical weather forecast

Forecast for 20 May 1910 1pm by direct
computation of the solutions to
simplified flow equations using input
data taken at 7am

Forecast predicted rise in surface
pressure by 145 hPa in 6 hours =
dramatic failure

A posteriori: failure to apply smoothing
to data to filter out unphysical waves




Lewis Fry Richardson (1881-1953)

Author of “Weather Prediction by
Numerical Process” (1922)

Richardson devised a method of solving the
mathematical equations that describe
atmospheric flow by dividing the globe into cells
and specifying the dynamical variables at the
centre of each cell. In Chapter 11 of his book, he
presents what he calls a ‘fantasy’, describing in
detail his remarkable vision of an enormous
building, a fantastic forecast factory.
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Henry Poincareé (1854-1912)

French mathematician, physicist and
philosopher of science

= Fundamental contributions to pure and
applied mathematics

= Studying the three-body problem, he
became the first person to discover a
chaotic deterministic system

= |Laid foundations for modern chaos
theory




“Why have meteorologists such difficulty in predicting the weather with any
certainty? Why is it that showers and even storms seem to come by chance ... a
tenth of a degree (C) more or less at any given point, and the cyclone will burst
here and not there, and extend its ravages over districts that it would otherwise
have spared. If (the meteorologists) had been aware of this tenth of a
degree, they could have known (about the cyclone) beforehand, but the
observations were neither sufficiently comprehensive nor sufficiently
precise, and that is the reason why it all seems due to the intervention of

chance”

Poincaré, 1909



Sensitive dependence on initial conditions

If we knew exactly the laws of nature and the situation of the universe at the
Initial moment, we could predict exactly the situation of the same universe at a
succeeding moment. But even If it were the case that the natural laws had no
longer any secret for us, we could still only know the initial situation
approximately. If that enabled us to predict the succeeding situation with the
same approximation, that is all we require, and we should say that the
phenomenon had been predicted, that it is governed by laws. But it is not always
so; it may happen that small differences in the initial conditions produce very
great ones in the final phenomena. A small error in the former will produce an
enormous error in the latter. Prediction becomes impossible, and we have the
fortuitous phenomenon.

Poincaré, 1903 “Science and Method”



Edward Lorenz (1917 —2008)

“... one flap of a sea-gull’s
wing may forever change the
future course of the weather”

The Lorenz (1963) attractor:
a prototype chaotic model
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Deterministic Nonperiodic Flow!

EpwarD N. Lorenz

Massachusetts Institute of Technology

{Manuscript received 18 November 1962, in revised form 7 January 1963)

ABSTRACT

Finite systems of deterministic ordinary nonlinear differential equations may be designed to represent
forced dissipative hydrodynamic flow. Solutions of these equations can be identified with trajectories in
phase space. For those systems with bounded solutions, it is found that nonperiodic solutions are ordinarily
unstable with respect to small modifications, so that slightly differing initial states can evolve into consider-
ably different states. Systems with bounded solutions are shown to possess bounded numerical solutions.

A simple system representing cellular convection is solved numerically. All of the solutions are found
to be unstable, and almost all of them are nonperiodic.

The feasibility of very-long-range weather prediction is examined in the light of these results.

1. Introduction

Certain hydrodynamical systems exhibit steady-state
flow patterns, while others oscillate in a regular periodic
fashion. Still others vary in an irregular, seemingly
haphazard manner, and, even when observed for long
periods of time, do not appear to repeat their previous
history.

These modes of behavior may all be observed in the
familiar rotating-basin experiments, described by Fultz,
et al. (1959) and Hide (1958). In these experiments, a
cylindrical vessel containing water is rotated about its

avie _and ic haatad nanr 1t vim and conlad noar tbe nantar

Thus there are occasions when more than the statistics
of irregular flow are of very real concern.

In this study we shall work with systems of deter-
ministic equations which are idealizations of hydro-
dynamical systems. We shall be interested principally in
nonperiodic solutions, i.e., solutions which never repeat
their past history exactly, and where all approximate
repetitions are of finite duration. Thus we shall be in-
volved with the ultimate behavior of the solutions, as
opposed to the transient behavior associated with
arbitrary initial conditions.

A closed hydrodynamical system of finite mass may

Lorenz (1963, JAS)

Deterministic chaos

X =—oX +oY
Y =—XZ+rX =Y
7Z = XY -bZ

‘... our results .. indicate that
prediction of the sufficiently
distant future is impossible by
any method, unless the
present conditions are known
exactly. In view of the
inevitable inaccuracy and
incompleteness of weather
observations, precise very-
long-range forecasting would
seem to be non-existent.”



The Essence of

A physical system that

» follows deterministic rules (absence of
randomness)

= put appears to behave randomly; it looks random
* |s sensitive dependent on the initial conditions
* [s nonlinear, dissipative and at least 3-dimensional

= growth of perturbations is flow dependent

C;—): =F[X] isanonlinear system
doX dF
dt & oX =J oX Edward Lorenz

Since F is a nonlinear function of X
= J=J(X)




Brief glossary (after E. Lorenz)

Nonlinear system: A system in which alterations in an initial state need not produce proportional alterations
In subsequent states

Dissipative system: A dynamical system in which the temporal evolution of any set of points of finite volume
in phase space leads to a set of smaller volume

Attractor: In a dissipative system, a limit set that is not contained in any larger limit set, and from
which no orbits (trajectories) emanate

Strange attractor: An attractor with a fractal structure (dimension of the set is not a whole number)

Sensitive Dependence: The property characterising an orbit (trajectory) if most other orbits that pass close to
it at some point do not remain close to it as time advances

Chaos: The property that characterises a dynamical system in which most orbits (trajectories) exhibit
sensitive dependence

Butterfly effect: The phenomenon that a small alteration in the state of a dynamical system will cause
subsequent states to differ greatly from the states that would have followed without
alteration; sensitive dependence



Dynamical system that is highly
sensitive to perturbations of the initial
conditions
(deterministic chaos)

80 120
time




In a nonlinear system the growth of initial uncertainty is flow dependent.
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The set of initial conditions (black circle) is located in different regions of the attractor in

a, b and c and leads to different error growth and predictability in each case.




Lorenz (1963)
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Chaos and ensemble forecasting

The atmosphere is a chaotic system where the
future state of the system can be very sensitive to

small differences in the current (initial) state of the
system.

Good predictability

Degree G

In practice, the initial state of the system is always
uncertain due to irreducible errors in and

iIncompleteness of observations of the initial
conditions 0 1 2 3 1 5 6 7 8 g 10

forecast time

_ Poor predictability
Our forecast models are not perfect in all aspects

(e.g. small-scale features such as clouds).

Ensemble forecasting takes into account these
iInherent uncertainties by running a large number of
similar but not identical versions of the model in

parallel. The resulting forecasts are expressed in
probabilities.




The “real” butterfly effect

The predictability of a flow which possesses many
scales of motion

By EDWARD N. LORENZ, Massachusetts Institute of Technology!

(Manuscript received October 31, 1968, revised version December 13, 1968)

ABSTRACT

It is proposed that certain formally deterministic fluid systems which possess many
scales of motion are observationally indistinguishable from indeterministic systems;
specifically, that two states of the system differing initially by a small “observational
error’ will evolve into two states differing as greatly as randomly chosen states of the
systern_within a finite time interval, which cannot be lengthened by reducing the
amplitude of the initial error. The hypothesis is investigated with a simple mathe-
matical model. An equation whose dependent variables are ensemble averages of the
“error energy’’ in separate scales of motion is derived from the vorticity equation which
governs two-dimensional incompressible flow. Solutions of the equation are determined
by numerical integration, for cases where the horizontal extent and total energy of the
system are comparable to those of the earth’s atornsphere.

It iz found that each scale of motion possesses an intrinsic finite range of predictabi-
lity, provided that the total energy of the system does not fall off too rapidly with
decreasing wave length, With the chosen values of the constants, ‘‘cumulus-scale”
motions can be predicted about one hour, “'synoptic-scale’ motions a few days, and the
largest scales a few weeks in advance. The applicability of the model to real physical
systems, including the earth’s atmosphere, is considersd.

Introduction gystems are indeterministic, and presumably

The laws which govern the behavior of a few fluid dynamicists would question the va-
fluid system—the principles of continuity of lidity of quantum mechanical principles merely
mass, momentum, and energy—are often stated  because they do not customarily make use Of

- ALl o M meer 1201 ate .13 _¥ ___1__ i_.1

Lorenz (1969, Tellus)



Predictability: Does a flap of a butterfly’s wings in Brazil set off a tornado in Texas?
- Talk by Ed Lorenz at a GARP session in Washington, D.C. on 29 December 1972 -

“Lest | appear frivolous in even posing the title question, let alone suggesting that it might
have an affirmative answer, let me try to place it in proper perspective by offering two
propositions.

1. If a single flap of a butterfly’s wings can be instrumental in generating a
tornado, so also can all the previous and subsequent flaps of its wings, as
can the flaps of the wings of millions of other butterflies, not to mention the
activities of innumerable more powerful creatures, including our own
species.

2. If the flap of a butterfly’s wings can be instrumental in generating a tornado,
it can equally well be instrumental in preventing a tornado.”

From: E. Lorenz: The Essence of Chaos (1993)



Predictability: Does a flap of a butterfly’s wings in Brazil set off a tornado in Texas?
- Talk by Ed Lorenz at a GARP session in Washington, D.C. on 29 December 1972 -

The most significant results are the following.

1. Small errors in the coarser structure of the weather pattern- those features which are readily resolved
by conventional observing networks - tend to double in about 3 days. As the errors become larger the
growth rate subsides. This limitation alone would allow us to extend the range of acceptable prediction by
3 days every time we cut the observation error in half, and would offer the hope of eventually making good
forecasts several weeks in advance.

2. Small errors in the finer structure - e.g., the positions of individual clouds - tend to grow much more
rapidly, doubling in hours or less. This limitation alone would not seriously reduce our hopes for
extended-range forecasting, since ordinarily we do not forecast the finer structure at all.

3. Errors in the finer structure, having attained appreciable size, tend to induce errors in the coarser
structure. This result, which is less firmly established than the previous ones, implies that after a day or so
there will be appreciable errors in the coarser structure, which will thereafter grow just as if they had been
present initially. Cutting the observation error in the finer structure in half would extend the range of
acceptable prediction of even the coarser structure only by hours or less. The hopes for predicting
two weeks or more in advance are thus greatly diminished.

4. Certain special quantities such as weekly average temperatures and weekly total rainfall may be
predictable at a range at which entire weather patterns are not.

From: E. Lorenz: The Essence of Chaos (1993)
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