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Chaos and weather prediction

The atmosphere is a chaotic system
® Small errors can grow to have
major impact

® We can never perfectly measure
the current state of the whole
atmosphere

Ensemble Forecasts

® Parallel set of forecasts from very
slightly different initial conditions
and model formulation

® Assess uncertainty of today’s
forecast
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- 51 Members (50 perturbed + control member without perturbations), CY48R1 ->
TCo01279 (~ 9 km) to day 15, extended-range, 100 member TC0319, ~ 36 km (see

Lang. et al., 2023 for model cycle description).

- 137 vertical levels

- Coupled to NEMO ocean model (1/4 degree), ecWAM wave model and LIM2 ice

model

- Initial perturbation via an ensemble of data
assimilations and singular vectors, 5 member
ocean data assimilation

- Model error representation — currently SPPT
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Perturbations to the initial conditions:

Methods that rely on the dynamics only, e.g.:
* bred vectors
* singular vectors

Ensemble data assimilation methods, e.g.:
 Ensemble of 4D-Var data assimilations (EDA)

e Ensemble Kalman Filter

ECMWE: combination of EDA and singular vectors
-> data assimilation methods know about obs coverage etc



Starting the Medium-Range Forecast — the ‘Analysis’

Analysis: 3 dimensional virtual image of the atmosphere at a given
time.
Observations Observations Observations

v v v

Forecast Forecast Forecast

Analysis = Analysis = Analysis

\ Medium-range forecast

Time

® The short range forecast from the previous analysis is our
‘first estimate’ of the current state of the atmosphere.



4D-Var assimilation
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4D-Var assimilation

To find model trajectory that best fits the observations over an assimilation interval
(t=0,1,...,T) - > finding the minimum of the 4DVar cost function:
T T

‘J(Xo): (Xb _Xo)T (Pb)_l(xb _Xo)+ — (yt o HtM0—>t(XO)) Rt_l(yt o HtM0—>t(X0))

t
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e ———————— Time
ty t1 1 lr

Analysis window

See lectures in DA Training
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Ensemble of 4D-Var data assimilations (EDA)

* 50 perturbed ensemble members + 1 control:
TCo639 outer loops (~ 18 km), 137 levels, TL191/TL191 inner loops.
(HRES DA: TCo01279 outer loops (~ 9 km), TL255/TL319/TL399/TL511

inner loops).

* Observations randomly perturbed according to their estimated error
covariances (R)

e SST perturbed with climatological error structures

* Model error representation via Stochastically Perturbed Parametrization
Tendencies (SPPT)

The EDA simulates the error evolution of the 4DVar analysis cycle:

—> uncertainty estimates to initialize ensemble forecasts

- Flow dependent estimates of background error covariances for use in 4D-Var
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See also Massimo Bonavita’s Talk in DA Training



Ensemble Data Assimilation Ensemble Forecast

Observation

Observation
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Thursday 30 September 2021 06 UTC ecmf t+3 VT:Thursday 30 September 2021 09 UTC surface Sea surface temperature
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Current Model Error Representation: SPPT See Leutbecher et al., 2017 and
Lock et. al, 2019 for details

Perturb model tendencies during the forecast:

— x4+ ax x sum of tendencies from parametrization schemes

Xp (convection, radiation, cloud etc.)

a includes random time and space correlations, provided by a pattern generator

Scale 1 Scale 2 Scale 3

Same model uncertainty representation in ensemble forecasts and ensemble data assimilation



Future Model Error representatlon SPP Ollinaho et al (2017), https://doi.org/10.1002/qj.2931
' Leutbecher et al (2017), https://doi.org/10.1002/9j.3094

«  SPP represents model uncertainties closer to the assumed sources of the errors

«  SPP better maintains physical consistency: e.g. local budgets and flux perturbations

«  SPPT only represents amplitude errors while SPP can also represent errors in the shape of
a heating profile

F_toa
toa {F laa - HhF_
SPPT SPP
F_sfc — F_sfc
Sfc Ocean model Surface model S fC
dT/ dt dT/ dt
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https://doi.org/10.1002/qj.2931
https://doi.org/10.1002/qj.3094
https://doi.org/10.1002/qj.3978
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MSLP

EDA mean EDA member 2 EDA member 2 — EDA mean
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EDA member 2 — EDA mean EDA member 4 — EDA mean EDA member 22 — EDA mean
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Ensemble Data Assimilation Ensemble Forecast

Observation

Observation
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Assimilation window Forecast

<> ECMWF 21



= = = = = = = = =
= = o = = = = o =
5 PN by n\\\ e -
o~ R “ LY :
o : AN ) “ = -
; _ Y m B <
i i i =
. m “ . g .
i m m E
M RV =8|
. T - 5 g
myl m' m«l
E 1 i o
8 | v X g
= e -
2 i i I3 E
2 ] H ©
mﬁl L 0 : ol
g L m h = g
TN T s
o4 3 : m
z e :
o — | .U 2 § o
: I 5 8°
] 1 &
g “ “ m g
- : f
© “ : @ -
= = M M = = = = =
2 3 = = 2 2 wV.. = 2
3 O o
N >B QG2
TS < DLW
0 oo o
Il 4 ©
= = = =
= = o =
w w =T o
._.Lﬁ R H
S ~“ u m %\_ . m
o~ D “ DY :
RN B S A N VU
: m (e
o (R I
BN &

275
|

255 260

250

Thursday 21 February 2019 18 UTC ecmf t+6 VT.Friday 22 February 2019 00 UTC 850 hPa Temperature
270
I

245

60°N

What is available when we start the 00

UTC ensemble forecasts?

T850hPa

e

)

[ o ] o ot S

I
I
I
1
I
I
i

=

a

50°N
30°N[-===---

EDA Mean,
18 UTC,
6h Fcsts

40

=
o

o
[

20°N

20°N

20°N

40°W 30°W 20°W 10°W 0°E 10°E

50°W

40°W 30°W 20°W 10°W 0°E 10°E

50°W



40°N

285
----=T730°N

s

LT

290
-~

285

265

5 260

25

250

Thursday 21 February 2019 18 UTC ecmf t+6 VT.Friday 22 February 2019 00 UTC 850 hPa Temperature
270
I

w 2 ]
S
)
Q0
2 5
W =
(o] II\I\“\\..

e

265

260

255

250

Thursday 21 February 2019 18 UTC ecmf t+6 VT.Friday 22 February 2012 00 UTC 850 hPa Temperature
270
I

L
r
'
I
0
I
0
I
0
I
L
R Ty yRpp———

245

[
[
A
=
al
=
o

50°N

EDA FC, 6h,
T850hPa
EDA
Member 1

20°N

A40°W 30°W 20°W 10°W 0°E 10°E

50°W

30°W 20°W 10°W 0°E 10°E

40°W

50°W

Thursday 21 February 2019 18 UTC ecmt t+6 VT:Friday 22 February 2018 00 UTC 850 hPa Temperature

Thursday 21 February 2019 18 UTC ecmf t+8 VT.Friday 22 February 2019 00 UTC 850 hPa Temperature

250 255 260 265 270 275 280 285 290 285

245

250 255 260 265 270 275 280 285 290 295

245

40°N

L

50°N

=
B

=]
w

EDA

=

Member 25

40°N|

30°N

P R

50°N

EDA

-

Member 3

B S

40°W 30°W 20°W 10°W 0°E 10°E

50°W

30°W 20°W 10°W 0°E 10°E

40°W

50°W



Generation of initial conditions for the ensemble forecasts:

_ | = 1..
AN,; = ANpyyes + (EDA; — EDA) + SVPERT; ]‘ ] gg
m ANHres m ANHres
EDA : 6h
Forecasts

Re-centre EDA-Distribution on Hres-Analysis

random number drawn from
NSET NSV, @ Truncated gaussian

SVPERTj — Z z e SV NSET : nhem, shem, TCs1-6
] k NSV : 50 for nhem and shem, 5 for TCs



New way to perturb the ensemble initial conditions for 50 Ensemble Members

Member 1 Member 2 Member 3 Member 4 Member 49 Member 50
Pert. 1 - Pert. 1 Pert. 2 - Pert. 2 Pert. 25 - Pert. 25
_ ,,\;7-'\/‘7: 5@\
Old: ’ s
Plus-Minus \
Symmetry with
Perturbations from R
25-Member EDA
z500hPa Member 1 Member 2 Member 3 Member 4 Member 49 Member 50
Pert. 1 Pert. 2 Pert. 3 Pert. 4 Pert. 49 Pert. 50

New:
Perturbations
from new
50-Member EDA

P
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See Lang et al. 2019, ECMWF Newsletter No. 158
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Ocean Initial state:

50 Members + 1 Control, 5 Ocean analyses

Member Ocean analysis

Control

Member 1
Member 2
Member 3
Member 5
Member 6
Member 7

N B OB WN R

Member 50 1



Reliability of the ensemble spread

@ Consider ensemble variance ( “spread”) for an M-member ensemble

| M
—\2
v > (% —x)
j=1
and the squared error of the ensemble mean

(x —y)?

@ Average the two quantities for many locations and/or start times.

@ The averaged quantities have to match for a reliable ensemble (within
sampling uncertainty).

From Martin Leutbecher’s lecture “Ensemble Verification 1”



Z500hPa

Ensemble StDev and Ensemble Mean RMSE,
averaged 2016112200 — 2017021300

00 UTC Run

StDev T+120h

RMSE T+120h

325899 50 100 150 200 250 300 350 400 41‘50 5(|)0 550 600 650 650.404
I | [ [ [ ] i

150°W  120°W  90°W  60°W  30°W 0°E 30°E 60°E 90°E  120°E  150°E

0°N 0°N

30°8 30°8

150°W  120°W  90°W  60°W  30°W ° ° ° ° 120°E  150°E

315081 70 140 210 280 350 420 4s|ao 560 630 700 755.725
T

150°W  120°W  90°W  60°W  30°W 0°E 30°E 60°E 90°E  120°E  150°E

0°N

30°8 30°8

150°W  120°W  90°W  60°W  30°W 0°E 30°E 60°E 90°E  120°E 150°E



500hPa geopotential Solid : Error
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Why SVs? Impact of SVs on ENS

z500hPa, Northern Extra-tropics
rmse_em, spread_em
2015081206-2015102706 (20)

400
300
L
]
=
C 200
---—+—-- no SVs
100+
—e— ref
O T T T T T
1 2 3 4 5 6
fc-step (d)

Oper like setup, TCo399, 20 Initial dates



Singular Vector Perturbations

Directions of fastest growth over
a finite time interval (optimisation
interval)

Justification: EDA + Model Uncertainty
representation produce substantial
spread in the directions of the leading
SVs but ensemble still under dispersive
(Leutbecher and Lang, 2014, QJRM)

Initial SV, T mlevel 68 evolved SV, T mlevel 49

20°E 3 60°E 80°E

80°N

analysis

initial SVs

e -

forecast

evolved SVs



Singular vectors are computed by solving an eigenvalue
problem (e.g. Leutbecher and Palmer, 2008).

c,'*m*P*c,PpMC,"*v = 6%v

* (C, and C; initial and final time metrics
« M(0,t) linear propagator from time 0 to t and its adjoint M*
« P and P* local projection operator and its adjoint

1 rp1 1
—/ / (U2—|—V2—|—CPT2> dp d5‘|‘_RdTrPr/(|npsfc)2d5
2 Po S Tr 2 S



Singular vectors in the operational EPS

@ resolution: T42L137

@ Extra-tropics: 50 SVs for N.-Hem. (30°N-90°N)
+ 50 SVs for S.-Hem.(30°5-90°S). Tangent-linear model with vertical
diffusion and surface friction only.

@ Tropical cyclones: 5 singular vectors per region targeted on active tropical
depressions/cyclones. Up to 6 such regions. Tangent-linear model with

. . . . . Now up to
representation of diabatic processes (large-scale condensation, convection, 12 target
radiation, gravity-wave drag, vert. diff. and surface friction). regions!

@ Localisation is required to avoid that too many leading singular vectors are
located in the dynamically more active winter hemisphere (Buizza 1994).
Also required to obtain (more slowly growing) perturbations associated with
tropical cyclones (Puri et al. 2001). In order to optimise perturbations for a
specific region simply replace the propagator M in the equations by PM,
where P denotes the projection operator which sets the state vector (

T, u,v.Inpg in grid-point space) to zero outside the region of interest and
Is the identity inside it.



SV Target Areas
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Regional distribution of Northern Hem. SVs

square root of vertically integrated total energy of SV 1-50 (shading)
500 hPa geopotential (contours)
initial singular vectors, 21 March 2006, 00 UTC
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Singular vector 5: initial time

21 March 2006, 00 UTC
Temperature at &~ 700 hPa

H
40°W 20°W o 20°E 40°E

Cross section of temp 20060321 00 step 0 Expver 0001

2004




(0
an —
= 2
0 o
(@) @
™M 3
>
CNN n
= ¢ g
- @© o
o o+ »
- -
S 8
nUD: &)
N E S
D) = O N X -
& v T &
5 &8°Z -
- “
— =3 5
C o S Kk
c AN @ w_
u_ -
U= S @
. . — )] S
O
O &

-
merid
2004
300+
4m_
500+
Gm_
T00:
ﬂm_
m_
1000

Singular vector 5




Singular values 6; — extra-tropics

Northern Hem.

solid: 2005070100
dashed: 2005092100
dotted: 2005122100

chain-dashed: 2006032100

Southern Hem.

solid: 2005070100
dashed: 2005092100
dotted: 2005122100

chain-dashed: 2006032100
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Singular vector growth characteristics

average energy of the leading 50 singular vectors
initial time (x 50), final time t =48 h (x 1)
. total energy; == ==: kinetic energy
Northern hemisphere extra-tropics, 2006032100

vertical profile spectrum

Total Wave Number

wave number  wave length

200 hPa < level 20 300 hPa < level 27 5 8000 km
500 hPa < level 35 700 hPa < level 42 10 4000 km
850 hPa < level 48 925 hPa < level 52 20 2000 km

40 1000 km



Initial condition perturbations

e Initial condition uncertainty is represented by a (multi-variate) Gaussian
distribution in the space spanned by the leading singular vectors

e [he perturbations based on a set of singular vectors vi,....v,, are of the
form
m
Xj = ) OljkVk (5)
k=1

e The aj, are independent draws from a truncated Gaussian distribution.

0.50
e The Gaussian is truncated at £3 451

standard deviations to avoid numer- 040 ]
. . ope. . 0.35 T
ical instabilities for extreme values. "
e The width of the distribution is set =021
so that the spread of the ensemble 0201

0.15 T
matches the root-mean square error ' ]
in an average over many cases (B~  oo0s]

10)_ 0.00 ¥




Combine SVs to construct Perturbations:
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nitial condition perturbation for member 1

Temperature (every 0.2 K); 21 March 2006, 00 UTC
at ~ 700 hPa




Initial condition perturbation for member 5

Temperature (every 0.2 K); 21 March 2006, 00 UTC
at &~ 700 hPa
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Future Challenges: AIFS - Artificial Intelligence Forecasting System

Graph Neural Network — Forecast model is learned from ERAS ; Data driven Forecast

-> following Keisler 2022 and Lam et. al 2022

- GNN architecture: Interaction Networks (Battaglia et. al 2016)

How perturb initial conditions? How to represent model uncertainty?

e
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Perturbed member 1

IFS 10m wind gusts, 2020-12-04 00 UTC 720h forecasts, 9 km spatial resolution
Control Member
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Nonlinear Model

Consider the spatially discretised equations describing the atmospheric
dynamics and physics written in this form

d . . B
EX_F(X)’ with x=| © |, F=

where x € RV denotes the N-dimensional state vector and F(x) € RV its
tendency. Integrate from ty to t gives the nonlinear model:



Tangent-linear system

Let x,(t) be a solution of
d

=x=F(x) (1)
Then the tangent-linear system is given by
Sx= Al (1)) % ©
dem

where [A(x)]jx = (dFj/dxk)(x) denotes the Jacobi matrix of F.

For any solution x of (2), x, + €x approximates a solution of (1) starting
at x,(tg) +€x(tg) to first order in €.

The (tangent-linear) propagator from ty to t; is the matrix M, ¢ such
that My, ;X0 is a solution of (2) for any initial perturbation xo and where

Mit.t] = |-



Perturbation Growth

Perturbation growth is defined as:

2 (x(1).x(t))

° T X(to)x(to))

<M[r0_.r]x(t0)a M[to.t]x(to»
(x(t0).x(0))

<M[7r_0__r] M[to,t]x(to): X(to))
(x(t0).x(t0))

with inner product (-.-) and growth factor 6°.

= Largest growth is associated with eigenvectors of M[Tm_r]M[ro,t]-

These eigenvectors are determined by a singular value
decomposition of My, 4.



singular value decomposition of a matrix

di1 - din

Consider a matrix Q= 5 5 c RM*N
dm1 - A9mn

Its singular value decomposition is defined as

Q=UsVT. (3)

where U and V are orthogonal m-by-m and n-by-n matrices.
Matrix S is a diagonal m-by-n matrix (s;; =0 if i # j, s;j = 0;). The values
o; on the diagonal of S are called singular values.
The columns u; of U are referred to as left singular vectors and the
columns v; of V are referred to as right singular vectors.
Eq. (3) implies that

QVj — GjUj

One can show that the v; are the eigenvectors of Q' Q!

see Golub and Van Loan: Matrix Computations for further details



singular value decomposition of the propagator

M=USV' — My;=o0ju

with the (initial) singular vectors v; being the eigenvectors and the squared
singular values 0']2 being the eigenvalues of MTM. The u; are called the
evolved singular vectors.

Singular vectors are optimal perturbations in the following sense.

@ the ratio of the final time norm to the initial time norm is given by
the singular value:

M .
” VJHf :Gj (4)
vl i

@ Singular vector j is the direction in phase space that maximises the
ratio of norms in the subspace orthogonal (with respect to Cgl) to
the space spanned by singular vectors 1...j —1.



Norms

@ T he definition of singular vectors in the context of ensemble prediction
involves norms (based on an inner product or metric). These are required to
measure the amplitude of perturbations.

(x.x)c = x"Cx
where C is symmetric (C' = C) and positive definite (x'Cx > 0 for x # 0).

@ For predictability applications, the appropriate choice for the initial time
norm is the analysis error covariance metric, i.e. the norm that is based on
the inverse of the initial error covariance matrix (or some estimate thereof).

Ix[|7 = x"Cy'x

@ The final time norm ||x||r is a convenient RMS measure of forecast error.

@ Total energy norm is used both at initial and final time for the operational
singular vector computations at ECMWEF:

1 [P C 1
2 T 2 2 P T2 2
=x Ex= — / + v+ =1 dd+—R7rr/I - )°d



On the choice of the initial time norm

@ [ he structure of singular vectors depends on the choice of the norm, in
particular the initial time norm.

@ An enstrophy norm at initial time penalises perturbations with small spatial
scales, the initial SVs are planetary-scale structures.

@ A streamfunction variance norm at initial time penalises the large scales and
favours sub-synoptic scale perturbations.

@ With a total energy norm at initial time, the energy spectrum of the initial
SVs is “white” and best matches the spectrum of analysis error estimates
from analyses differences (Palmer et al. 1998)



The tangent-linear model and its adjoint

e For a numerical model with ~ 10° — 10® variables it is not possible to
obtain the propagator M as a matrix.

e Instead algorithmic differentiation is used to obtain the first derivative of
the numerical algorithm that represents the forecast model.

For any initial perturbation x, the evolved perturbation Mx is obtained via
an integration of the tangent-linear model.

e Then, the numerical algorithm representing M! the adjoint (transpose)
of the propagator is constructed. The adjoint model is integrated
backward from t; to tg.

e The reference solution x,(t) about which the equations are linearised is
referred to as trajectory.

e [he time interval the SVs are calculated for is called the optimization
interval.



Weather Forecasts — NWP? Data Driven?

Traditionally weather forecasts are generated by running NWP model — computer code that has been designed
to represent the physical processes governing the evolution of the atmosphere. But can you produce a forecast
without a NWP model?

NWP Model

. 4

Fusion of short-range forecast
with latest observations

Data Driven Model

v

Learned from 40
years of analyses

\\ .
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Weather Forecasts — NWP? Data Driven?

Recent advances by tech companies and individuals show that this is possible (e.g. NVIDIA, Deepmind,
Huawei, ... and others)

Here, the models learn from ca. 40 years of ERAS re-analysis data, stepping e.g. 6h from analysis to analysis

The forecast is then autoregressively stepping 6h into the future x, = f(x,,;) ...
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