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Chaos and weather prediction

The atmosphere is a chaotic system

⚫ Small errors can grow to have 
major impact

⚫ We can never perfectly measure 
the current state of the whole 
atmosphere

Ensemble Forecasts

⚫ Parallel set of forecasts from very 
slightly different initial conditions 
and model formulation

⚫ Assess uncertainty of today’s 
forecast
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TCo1279L137 ENS, 51 Members, 

20200913 00 UTC + 41 h

NOAA



▪ - 51 Members (50 perturbed + control member without perturbations), CY48R1 -> 

TCo1279 (~ 9 km) to day 15,  extended-range, 100 member TCo319, ~ 36 km (see 

Lang. et al., 2023 for model cycle description).

▪ - 137 vertical levels

▪ - Coupled to NEMO ocean model (1/4 degree), ecWAM wave model and LIM2 ice 

model

▪ - Initial perturbation via an ensemble of data 

▪ assimilations and singular vectors, 5 member 

▪ ocean data assimilation

▪ - Model error representation – currently SPPT
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Sources of Uncertainty:

• Initial Conditions

• Model Formulation



Methods that rely on the dynamics only, e.g.: 
• bred vectors
• singular vectors

Ensemble data assimilation methods, e.g.:

• Ensemble of 4D-Var data assimilations (EDA)
• Ensemble Kalman Filter

ECMWF: combination of EDA and singular vectors
-> data assimilation methods know about obs coverage etc

Perturbations to the initial conditions:



Starting the Medium-Range Forecast – the ‘Analysis’

⚫ The short range forecast from the previous analysis is our 
‘first estimate’ of the current state of the atmosphere.

Analysis: 3 dimensional virtual image of the atmosphere at a given 
time.



4D-Var assimilation



• To find model trajectory that best fits the observations over an assimilation interval 

(t=0,1,…,T) - >    finding the minimum of the 4DVar cost function: 
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4D-Var assimilation

See lectures in DA Training
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• 50 perturbed ensemble members + 1 control: 
TCo639 outer loops (~ 18 km), 137 levels, TL191/TL191 inner loops. 
(HRES DA: TCo1279 outer loops (~ 9 km), TL255/TL319/TL399/TL511 
inner loops). 

• Observations randomly perturbed according to their estimated error 
covariances (R)

• SST perturbed with climatological error structures

• Model error representation via Stochastically Perturbed Parametrization 
Tendencies (SPPT) 

The EDA simulates the error evolution of the 4DVar analysis cycle:

→ uncertainty estimates to initialize ensemble forecasts

→ Flow dependent estimates of background error covariances for use in 4D-Var

Ensemble of 4D-Var data assimilations (EDA)
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See also Massimo Bonavita’s Talk in DA Training

The Ensemble of Data Assimilations
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Example: SST perturbations



𝒙𝒑 = 𝒙 + 𝜶𝒙

𝜶 includes random time and space correlations, provided by a pattern generator

Scale 1 Scale 2 Scale 3

Current Model Error Representation: SPPT See Leutbecher et al., 2017 and 

Lock et. al, 2019 for details

Same model uncertainty representation in ensemble forecasts and ensemble data assimilation

Perturb model tendencies during the forecast:

𝒙 sum of tendencies from parametrization schemes 

(convection, radiation, cloud etc.)



Key differences between SPPT and SPP:
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• SPP represents model uncertainties closer to the assumed sources of the errors

• SPP better maintains physical consistency: e.g. local budgets and flux perturbations

• SPPT only represents amplitude errors while SPP can also represent errors in the shape of 

a heating profile

Ollinaho et al (2017), https://doi.org/10.1002/qj.2931

Leutbecher et al (2017), https://doi.org/10.1002/qj.3094

Lang et al (2021), https://doi.org/10.1002/qj.3978

Future Model Error representation: SPP

see Sarah-Jane’s talk

https://doi.org/10.1002/qj.2931
https://doi.org/10.1002/qj.3094
https://doi.org/10.1002/qj.3978
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MSLP



20EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

EDA member 22 – EDA meanEDA member 4 – EDA meanEDA member 2 – EDA mean
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How to improve?

HRES 

Analysis

00 UTC

T850hPa

EDA Mean,

18 UTC,

6h Fcsts

EDA StDev,

18 UTC,

6h Fcsts

What is available when we start the 00 

UTC ensemble forecasts?



How to improve?

EDA 

Member 1

EDA 

Member 2

EDA 

Member 3
EDA 

Member 25

EDA FC, 6h, 

T850hPa



𝑨𝑵𝒑𝒇 = 𝑨𝑵𝑯𝒓𝒆𝒔 + 𝑬𝑫𝑨𝒊 − 𝑬𝑫𝑨 + 𝑺𝑽𝑷𝑬𝑹𝑻𝒋

Generation of initial conditions for the ensemble forecasts:

Re-centre EDA-Distribution on Hres-Analysis

𝑬𝑫𝑨 𝑨𝑵𝑯𝒓𝒆𝒔𝑬𝑫𝑨𝑨𝑵𝑯𝒓𝒆𝒔

𝑺𝑽𝑷𝑬𝑹𝑻𝒋 = ෍

𝒍

𝑵𝑺𝑬𝑻

෍

𝒌

𝑵𝑺𝑽𝒍

𝜶𝒍𝒌 𝑺𝑽𝒍𝒌

𝒊 = 𝟏. . 𝟓0
𝒋 = 𝟏. . 𝟓0

𝜶
random number drawn from 

Truncated gaussian

NSET : nhem, shem, TCs1-6

NSV   : 50 for nhem and shem, 5 for TCs

EDA : 6h 

Forecasts
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New way to perturb the ensemble initial conditions for 50 Ensemble Members

Old: 

Plus-Minus 

Symmetry with 

Perturbations from

25-Member EDA

New: 

Perturbations 

from new 

50-Member EDA 

Member 1

Pert. 1

Member 2

- Pert. 1

Member 3

Pert. 2

Member 4

- Pert. 2

Member 49

Pert. 25

Member 50

- Pert. 25

…

…

Member 1

Pert. 1

Member 2

Pert. 2

Member 3

Pert. 3

Member 4

Pert. 4

Member 49

Pert. 49

Member 50

Pert. 50

z500hPa 

See Lang et al. 2019, ECMWF Newsletter No. 158



How to improve?

HRES 

Analysis

00 UTC

T850hPa

+

+ =

SV-

Pert 1

Initial 

conditions 

for ENS 

member 1

EDA-

Pert 1



How to improve?

HRES 

Analysis

00 UTC

T850hPa

+

+ =

EDA-

Pert 3

SV-

Pert 3

Initial 

conditions 

for ENS 

member 3



How to improve?T850hPa

Member 1:

Member 2:

T+0h T+240h



Ocean initial state:

Member Ocean analysis

Control 1

Member 1 2

Member 2 3

Member 3 4

Member 5 5

Member 6 1

Member 7 2

…

Member 50 1

50 Members + 1 Control, 5 Ocean analyses



From Martin Leutbecher’s lecture “Ensemble Verification 1”



Z500hPa 

Ensemble StDev and Ensemble Mean RMSE, 

averaged 2016112200 – 2017021300

00 UTC Run 

StDev T+120h

RMSE T+120h
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Solid     : Error

Dashed : Spread

2001  2008   2018



Why SVs?



Singular Vectors?

Directions of fastest growth over 

a finite time interval (optimisation 

interval)

Justification: EDA + Model Uncertainty 

representation produce substantial 

spread in the directions of the leading 

SVs but ensemble still under dispersive 

(Leutbecher and Lang, 2014, QJRM)

Singular Vector Perturbations

Initial SV, T mlevel 68 evolved SV, T mlevel 49



Singular vectors are computed by solving an eigenvalue 

problem (e.g. Leutbecher and Palmer, 2008):

𝑪𝟎
−𝟏/𝟐

𝑴∗𝑷∗𝑪𝟏𝑷𝑴𝑪𝟎
−𝟏/𝟐

𝒗 = 𝝈𝟐𝒗

• 𝐶0 and 𝐶1 initial and final time metrics

• 𝑀(0, 𝑡) linear propagator from time 0 to t and its adjoint 𝑀∗

• 𝑃 and 𝑃∗ local projection operator and its adjoint



How to improve?

Now up to 

12 target 

regions!

T42L137
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SV Target Areas



How to improve?



How to improve?



How to improve?



How to improve?



How to improve?



How to improve?



Combine SVs to construct Perturbations:

𝜶𝟏 × + 𝜶𝟐 ×

SV1 SV2

SVTCn

+ 𝜶𝑻𝑪𝟏 ×

SVTC1

+⋯

+⋯

SV50

=

SVPERT 1



How to improve?



How to improve?



How to improve?



How to improve?

HRES 

Analysis

00 UTC

T850hPa

+

+ =

EDA-

Pert 3

SV-

Pert 3

Initial 

conditions 

for ENS 

member 3
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TCo1279L137 TCo639L91
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TCo1279L137

TCo639L91
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- GNN architecture: Interaction Networks (Battaglia et. al 2016)

-> following Keisler 2022 and Lam et. al 2022

Future Challenges: AIFS - Artificial Intelligence Forecasting System

Graph Neural Network – Forecast model is learned from ERA5 ; Data driven Forecast

How perturb initial conditions? How to represent model uncertainty?
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How to improve?
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Weather Forecasts – NWP? Data Driven? 

Traditionally weather forecasts are generated by running NWP model – computer code that has been designed 

to represent the physical processes governing the evolution of the atmosphere. But can you produce a forecast 

without a NWP model?

Analysis Forecast

Fusion of short-range forecast 

with latest observations

NWP Model

Data Driven Model

Learned from 40 

years of analyses
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Weather Forecasts – NWP? Data Driven? 

Recent advances by tech companies and individuals show that this is possible (e.g. NVIDIA, Deepmind, 

Huawei, … and others)

Here, the models learn from ca. 40 years of ERA5 re-analysis data, stepping e.g. 6h from analysis to analysis

6h 6h 6h

The forecast is then autoregressively stepping 6h into the future xn = f(xn-1) …
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