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Why do we care about land processes?

* Energy-budget

— Albedo Surface Albedo
Dark forest 9-12%
Grassland 15-20%
Bare saoil 20-30%
Snow in forest 15-25%
Open snow 50-85%
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Albedo (100x100km mean)

Example of snow transitions

Snow and albedo
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Why do we care about land processes?

* Energy-budget
— Albedo

— Evaporative fraction

*

H LE
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Surface LE/Q*
Boreal forest 25%
Forest in temperate climate 65%
Dry vineyard 20%
Irrigated field in dry area 100%



Why do we care about land processes?

* Energy-budget
— Albedo

— Evaporative fraction

» Water budget

— Runoff-fraction

E

=) Direct runoff

Drainage
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Land processes in atmospheric models

* Energy-budget
— Albedo

— Evaporative fraction

» Water budget (\

— Runoff-fraction

\ Deep

— Soil water reservoir
\ rootzone

Shallow
rootzone

Season
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Land processes in atmospheric models

* Energy-budget
— Albedo

— Evaporative fraction m /\/\
* Water budget woodland grass mountains
— Runoff-fraction
— Soil water reservoir
*  Momentum budget '
— Roughness elements
— = L =
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Land processes in atmospheric models

* Energy-budget

— Albedo

— Evaporative fraction
» Water budget

— Runoff-fraction

— Soil water reservoir
*  Momentum budget

— Roughness elements

» Carbon budget

— Not directly relevant for seasonal forecasting, but
vegetation changes have feedbacks on other processes
and are important for climate modelling
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What is needed to contribute to predictability?

* In the climate system all processes are connected

“Heat  Carbon © Water

» A systematic influence of land surface on atmosphere requireS'

— Variability ss Santanelo et al. (2018) . —
— Memory AENT R \/5_\}:\#(‘))
— Coupling to the atmosphere /\AP/C'“"S ':'

ASM — AEFyy, — APBL — AENT — ATy, Qam & AP/Clouds
{a) (b) (<) (d)

Otherwise: Can just use downstream/application models,
e.g. crop modelling, hydrology flood forecasting, fire risk models etc
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Dirmeyer et al, 2009

Soil moisture memory (days)



lag (Days)
10 20 30 40

Soil moisture predictablility (observation-based estimates)

Oensingen Rietholzbach Falkenberg
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Wn=soil moisture at time n

Pn=total precipitation between time n and n+lag
En=total evaporation between time n and n+lag
Qn=total runoff between time n and n+lag
Cs=water holding capacity
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Measures to quantify land-atmosphere coupling

* From observations:

— relation between (soil) wetness and extreme temperatures

High-density station observations

3 Density Density
020 010 O 06 04 02 O
| | | I I I

HWD,,,, (days)

| | 1 | | l |
-1.5 =10 -05 0 05 10 15

Dry SPI Wet
Regression lines: — 0.1,03,0.7,09
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SPI=Standardized Precipitation Index
(measure of soil moisture deficit over
preceeding 6 months)
HWD,,,,=maximum heatwave duration

Predictability over wet
conditions better than
over dry conditions

4

Hirschi et al, 2011, Nat Geo
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Soil-moisture atmosphere coupling ~ @#ise

Funded by the
European Union

E = BEPOT — p’pa [%at({s)_%]

with

=By
B =
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B = 0 for 0 < GW]LT

Owirt Ocnr  Soil moisture content

Seneviratne et al., 2010



Measures to quantify land-atmosphere coupling

* From (pseudo)observations:

— Correlation between evaporation and temperature

Feb-Apr

Over mid-latitude oceans,
evaporation depends on
humidity: colder air is
generally drier

Over moisture-limited
land, drier conditions
reduce evaporation
and cause higher
temperatures

Energy limited

Corr monthly CTL evap-t2m m02 EOC
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Seneviratne et al, 2010

SOIL MOISTURE LIMITED

EF max

Bunr 6cmr  Soil moisture content

If soils are wet, higher
temperatures drive higher
evaporation

Soil water limited
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Measures to quantify land-atmosphere coupling

* From (pseudo)observations:

— Correlation between evaporation and temperature

May-Jul

Corr monthly CTL evap-t2m m05 EOC
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Measures to quantify land-atmosphere coupling

Seneviratne et al, 2010

* From (pseudo)observations:

— Correlation between evaporation and temperature

Energy limited
Aug-Oct Corr monthly CTL evap-t2m m08 EOC
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Bunr 6cmr  Soil moisture content
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Soil water limited
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Measures to quantify land-atmosphere coupling

* From (pseudo)observations:

— Correlation between evaporation and temperature

Nov-Jan

Corr monthly CTL evap-t2m m11 EOC

Y oo
- ECMWF PREDICTABILITY TRAINING COURSE 2023: LAND-ATMOSPHERE VARIABILITY

Energy limited

1.00
0.81
0.62

0.44

0.25

0.06

0.06

0.25

.44

.62

0.8
-1.00

Soil water limited

Seneviratne et al, 2010

SOIL MOISTURE LIMITED

Bunr 6cmr  Soil moisture content
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Measures to quantify land-atmosphere coupling

* From a model experiment (GLACE = Global Land Atmosphere Coupling Experiment)

* How?
— Simulate the hydrological cycle with (W) and without (S) interactive land-atmosphere coupling and
compare.

* How to remove coupling?

— In second ensemble (S), replace soil moisture in all ensemble members by values from one of the
integrations in the first (interactive) ensemble.

* How to measure the effect? % (/NW‘\L\QL
3

— Ensemble simulations AENT Kng_gfe? )

p =y
I

" “0P[Clouds’ | ﬁ

— Compare within-ensemble spread
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P (mm/day)

P (mm/day)

Comparison of precipitation between ensembles

3 omegaRi0ss Diagnostics:
“r All simulations in ensemble
sk respond to the specified land surface
i » boundary condition in the same way ) ) )
o 1 == Strong coupling () = (160' <x>—0 X)/150' X
°F Q(W)= fraction of variance “explained”
oL (forced) by all boundary and initial conditions
0
Q(S)-Q(W)= fraction of variance “explained”
(forced) by all boundary and initial conditions
zo:—
I Simulations in ensemble
15 :/ have no coherent response
[ - e to the specified land surface
o \J ‘(/\ } '/, boundary condition
i N _
. /A = Weak coupling
B //A\V/ s
S /iA/ \'4// /v‘\Q’Q \‘I/ “' \
Iadh A A
0

IR A
Koster et al, 2002 %iﬁ@ ,%
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Areas with strong feedback on precipitation

Land-atmosphere coupling strength (JJA), averaged across AGCMs

0.12
0.1
60N
0.10
0.09
30N
—0.08
0.07
Q(S)-Q(W)
EQ 0.06
0.4
03 0.05
0.2
This is a famous figure, and o ﬂ H _ 0.04
looks very nice. But note that = : :
different models gave 0.03
substantially different results. '
Model representation of land 60S :
surface processes is improving, -0.30

but still has some way to go. 180 120W 60W 0 60E 120E 180

Koster et al, 2004, Science % iﬁ@ﬁ
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Strong precipitation coupling needs combination of sensitivities

Soil water drives Both

Evapotranspiration
Evapotranspiration

drives precipitation

sensitivity —

dry —  wet

g
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Strong feedback on precipitation at transition between arid and temperate
zones

Koppen classification

>
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IBSk -Dsd-Dwd-Dfd
Main cli Precipitati Temperature
At equatorial W:desert h: hot arid F: polar frost
B: arid Sz steppe k: cold arid T: polar tundra
C: warm temperate  : fully humid a: hot summer
) D: snow s summer dry b: warm summer
Koster et al, 2004, Science £: polar wi winter dry < cool summer

m: monsoonal d: extremely continental
T
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Some “real” land-surface predictability experiments

* Global Land Atmosphere Coupling Experiment — 2

— Compare 2 ensembles of seasonal forecasts (8 weeks ahead)
« Ensemble 1: all members use the same realistic initial conditions

« Ensemble 2: every member gets a randomly selected initial condition

— Measure R? difference using real observations

1b. AIR TEMPERATURE FORECAST SKILL (r® with land ICs minus r* w/o land ICs)
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Van den Hurk et al, 2012
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Another experiment, similar set-up, different results!

» Similar to GLACE-2, multi-model study (5 models), but
— comparing realistic versus climatological initial conditions
— coupled ocean model instead of prescribed SSTs

— Longer period (19 yrs instead of 10 yrs)h

RMS skill INIT — CLIM

Model bias in correlation
between soil moisture
and temperature gives

poor results in US

(Models have dry bias, which results in
a too-strong sensitivity of T2m to initial

soil moisture). 7

Ardilouze et al, 2017

5 03 015 0.1 005 0bs 0 0 L n|:-: '
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Prediction of an individual event

* European heat wave 2003

* Different set-ups of ECMWEF forecasting system

Combination of land

IS needed to improve
forecasts

surface and atmosphere

4

Old model

New model

New model
(old land surface)

New model
(old radiation)

New model
(old convection)
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New study, somewhat different results again

* 5 models, comparing INIT with CLIM initialization EL_lropean heatwave 20_03
IS less affected by soill
- Start date 1 May, evaluation JJA than Russian heatwave
e e 2010
. Forecast Initialized in May
Observed Anomalies (odds ratio) 7
b) T?m: CLIM c) T?m: INIT

W R

d) T2m: ERAInt e) T2m: CLIM f) T2m: INIT

Odds ratio: relative enhancement of
probability of being in either the upper
(red) or lower (blue) quintile. So a value of
3 means a 60% chance of being in the
uppermost/lowermost quintile category.

Prodhomme et al, 2015

> 0 55 4 3 2
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Remote responses to May soil-moisture anomalies

Model results: Koster et
al., (2014)

o Monopole 1 Results |
009 E
o.og £
0.0 -
0.00 £
-0.03 §
-0.06 ©
-0.09 E 3.00
& 2.00
1.00
S 0.70
£ L 0.50
2 5 +0.23
: © L 0.20
a1 g 1+—0.15
-2 —0.10
-3 E —0.05
~ - 0.00
L -0.05
—-0.10
L9 3 +-0.15
13 © -0.20
a7
—-0.5 o -0.50
-11g -0.70
173 -1.00
- -2.00
v200 Iag: -3.00
3 = = 3
1 g
01 'é’
59
=3




Role of soil-moisture-precipitation feedbacks in climate model biases
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(Negative precipitation bias) (mm d™')

Dry atmosphere,
too little clouds

START HERE

Negative precipitation bias

AENT

APBL

(a) (b)

Evaporation stops,
Less land cooling

Lin et al., 2017
Nat Comm

ASM — AEF,,, — APBL — AENT — AT, Qa2 & AP /Clouds

{e) (d)

Soil drying due to
underestimated precipitation
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New developments |
2 ONFE>S 2Rloe

CONFESS project
* Multiple aspects, land is one part: see https://confess-h2020.eu/
* Vegetation dataset of land use/land cover (Land use/Land cover) and Leaf Area index (LAI), 1993-2020

» Experiments to explore impact of specified and interactive vegetation on seasonal prediction systems.

b gy i L | G R NS S
. | ; S oty
n Yo KT g : == I “:, From Boussetta and
; S it 2N Balsamo, 2021
' » % »| (CONFESS Deliverable D1.1)

& ]

Figure 3: Vegetation cover differences between 2000 minus 2019 (right) for low vegetation and (left) for high vegetation
covers.

« Work on interactive vegetation and predictability is continuing in the CERISE project.
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ERA5 Anomaly Time varying LAI+LULC minus CONTROL LAl Anomaly
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Figure: June-to-August 2003 seasonal mean 2m temperature over Europe: (a) ERA5 anomaly and (b) difference between

2m Temperature (°C) JJA 2003 01-05IC CY49R1v4

LAI+LULC and CONTROL experiments. Also plotted in (c) is the Leaf Area Index anomaly.

50°N

40°N [ 2!

ERA5 Anomaly

50°N

40°N |

30°N : IV ———
40°E  50°E  60°E 20°E  30°E  40°E  50°E  60°E 70°E  80°E
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2m Temperature (°C) JJA 2010 01-05IC CY49R1v4

Impact of time varying land properties on seasonal reforecasts

LAI Anomaly

% ONFESS

Consistent representation of temporal variations of
boundary forcings in reanalyses and seasonal forecasts

Figure: Same as above, but for 2010.

Slide from Retish Senan
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Snow cover as a predictor of the Arctic Oscillation

Corr of DJF AO and DJF SLP 1997-2010

-

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Corr of SAl and DJF SLP 1997-2010

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8
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Cohen and Jones (2011)
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A mechanistic view of remote response to snowcover

Polar vortex weakens
L ( —— c& breaks down

Win'tlwqesmead '
ertime cooling g >

Step 1 Steps 2—4 Steps 5-6
Expanding fall snow Planetary wave generation, propagation Stratosphere-to-troposphere
cover and near surface cooling and dissipatation in the stratosphere propagation of zonal-mean anomalies

V e PREDICTABILITY TRAINING COURSE 2022: LAND-ATMOSPHERE H
WECMWF VARIABILITY Henderson et al., (2018), Nat Clim



Summary

A v
 For land-related predictability we need | g ¥
— Variability '
— Memory (soil moisture, snow mass, vegetation, ... ) e " o
— Coupling

 Predictability affects multiple time scales which can interact

— Predictions of heatwaves - short time scales

— Predictions of long warm/cool spells - seasonal time scales

» Land surface signal is small in some regions but large in certain “hotspots”
— Evaporation limited vs Energy Limited soils

— Transition zones between semi-arid and humid climates.

 Errors in land-atmosphere feedbacks can lead to large biases that degrade prediction skill on
subseasonal-to-centennial timescales.
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Additional slides
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Trend contributes to T2m predictability
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Note: initialized land surface (solid line)
gives additional signal in T2m, especially
in early summer. Note these plots show
predictability not skill — extra skill would
require the additional land surface signal
to be correct.

Before detrending
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After detrending
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Impact on T2m forecast skill of improved land surface initial conditions

CRPSS
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Difference in CRPSS skill from 36 years of re-forecasts with 51
member ensembles, comparing Cy46rl (ERAS ICs) and Cy45r1
(SEASS ICs). Sensitivity experiments (lower resolution, smaller
ensemble size) confirm that the main driver of improvement is
change in ICs, not the model.
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How about trends in predictability?

« Can we see climate trends in predictability?
— Model experiment: compare ensemble seasonal forecasts 1900-1929 to 1980-2009

« Can we see trend in land surface contribution to this predictability?

— Model experiment: same forecasts but with random initial land conditions

* Metric: ratio between signal and total variance
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An anecdote demonstrating impact of soil moisture

* Mid '90’s: introduction of prognostic soil moisture scheme
START HERE
fc error of 2m Temperature nigp Europe

wow blas 30 —#~ #id J0h = bias I6h —a— atd I6h 1ewis bias 42h

T TN Dry atmosphere, Positive radiation bias
5T : R 5 too little clouds

41 RS R
stddev , |¢ X

Model normally
too cold

- ,3
|l2|284|||l2§4|||l?§| lS???UO!‘m27J|0|724|0|§”?95|2|97620'54
JAN FEB MAR Al MAY JUN JUL AUG SEP
1994
SUddenIy extreme ASM (:)»AEF,," (—";APBLEAENT‘:»ATZ,,, ,Qum & AP /Clouds
warm dry drift Evaporation stops, _ _
Less land cooling Soil drying due to
i ) .. ) ) overestimated evaporation
* Soil moisture data assimilation needed to control drift P

(Root cause of drift was model bias, but once unphysical constraint was removed, model bias led
to errors that grew over time)
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