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Initialization and Forecast Strategies for 
Seamless Prediction

• Setting the scene

• Initialization shock, forecast drift and calibration

• Example: initialization of the ocean

• Approaches to initialize Earth System predictions

• Ensemble generation for ocean initial conditions



System with multiple time scales

From the fast component (atmospheric) point of view  is a  boundary problem 

Predictability of the second kind or “loaded dice”

Forcing exterted by boundary conditions changes the atmospheric circulation, modifying the large scale patterns 

of temperature and rainfall, so that the probability of occurrence of certain events deviates significantly from 

climatology. 

•Which boundary conditions?:  

•SST, soil moisture, snow, sea-ice, radiative forcing, stratosphere

•In Earth System models these slow components are prognostic –no longer boundary.

•For the slow component perspective, S2S prediction is an initial value problem 

•Predictability of the first kind: The slow components need to be initialized

The basis of forecasts beyond weather time scales 



Initialization: an essential stage in the forecasting process

Initialization distinguishes a forecast from a simulation/projection.

But it may not be perfect: 

• Models are not perfect
• Observations are insufficient
• The data assimilation (translator) has deficiencies

Initialization: an essential stage in the forecasting process
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Initialization shock implies that the data assimilation process has created imbalances 

in the initial condition, not supported by the model physical constrains. The observation 

information is rapidly lost  via adjustment processes that deteriorate skill.

Possible reasons for initialization shock

1. Deficient data assimilation 

• Example: Insufficient physical constrains

• Example: Data assimilation forces scales that the model is not able to represent.

• Example: Too much weight to observations and poor quality control leads to erroneous observations 

being assimilated.

2. Initial conditions produced with a different model than the used for the forecast.

• Separate initialization of ocean and atmosphere

• Different model cycles

What causes initialization shock? 



From Mulholland et al, 2015 MWR

Slowest Forecast  Error Growth: coupled initialization

Fastest  Forecast  Error Growth:  Ini Model .ne. FC. Model  and uncoupled initialization 

1) Uncoupled: different models

2) Uncoupled: Same models

3) Coupled

Initialization shock: forecast error growth depends on initialization 

Initialization

Experiment: same forecast 
model with 3 different 
initialization



SEAS5 S4      S5-lr S5-mr

SEAS5: ECMWF Seasonal Forecasting System
S4      : Previous   “             “                “               “ 
S5-lr  : As SEAS5, LR ocean and LR atmos
S5-mr: As SEAS5, LR oocean, and HR atmos

Fc drift in the variance (the second moment) 

• The interannual variability is affected

• Non linearity:  links mean-variability

Note 1: basic a-posteriori bias correction only valid if  Biases are  stationary and system is linear

Note 2: One common perception is the drift only depends on the model. But it also depends on initialization (e.g. ini. shock)

σfc / σobs

Fc drift in the mean: first moment of distribution  (bias) 

• Bias depends on model resolution
• Bias depends of lead time
• Bias depends on the phase of seasonal cycle

Drift and bias: a seasonal forecast example   



Optimal Initial Conditions: those that produce the best forecast.

Need of a metric: lead time, variable, region (i.e. subjective choice)

In 4D-var the metric are the atmospheric forecasts errors at short lead time (6-12h)

This does not guarantee optimal forecast at the extended or seasonal range.

There is not criteria to optimize the other Earth System Components: ocean, land, …

Initial conditions should represent accurately the state of the real world  and project into the model attractor, so 

the model is able to evolve them.

Difficult in the presence of model error

Initialization Shock and forecast drift

Practical requirements arising from calibration: 

– Stationary forecast  errors 

– Consistency between re-forecasts and real time fc  Need for historical reanalysis

Adequate representation of uncertainty

Initialization Problem: Production of Optimal I.C.  
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Requirements

• Consistence with real time forecasts, so calibration makes sense

• Temporal consistency and faithful representation of a wide range of time scales:

diurnal cycle-intraseasonal-seasonal-interannual-decadal variability –trends

This is challenging in the presence of model error and a changing observing system

• Accurate and physically balanced estimate estimation and associated uncertainty.

• So observational information can be propagated into the forecasts.

• So relevant processes can be reliably quantified

• As far back as possible 

Additional requirement:  Reanalyses to initialize Reforecasts  

Applications

• Calibration of forecasts from days to decades
• Detection and prediction of extreme events
• Skill assessment
• Reanalyses used for monitoring
• Predictability and evaluation studies Reforecast errors should be consistent with the 

errors of the real time forecast. 
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Need to Initialize the subsurface of the ocean

SST Eq Anomaly
2OC Isotherm Depth Eq Anomaly

Emphasis on the thermal structure of the upper ocean
Predictability is due to higher heat capacity and predictable dynamics

Need to Initialize the slow components: The ocean example  
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XBT’s 60’s      Satellite SST  Moorings/Altimeter ARGO 

1982 1993 2001

Time evolution of the Ocean Observing System

Information needed to initialize the ocean  

Ocean model  + Atmospheric fluxes from atmospheric reanalysis

AND

Ocean Observations                             +            Data Assimilation methods

SST

Subsurface ocean information



Taux anomalies

Upper ocean heat content  anomalies. No assimilation

Upper ocean heat content anomalies.  Assimilation 

ERA15/OPS

ERA40
• Large uncertainty in wind products lead to 

large uncertainty in the ocean subsurface

• The possibility is to use  additional 

information from ocean data (temperature, 

others…)

•Questions:

1.Does assimilation of ocean data constrain 
the ocean state? YES

2.Does the assimilation of ocean data 
improve the ocean estimate? YES

3.Does the assimilation of ocean data  
improve the seasonal forecasts. YES

Equatorial Atlantic

Need for data assimilation: Uncertainty in Surface Fluxes  



Predictability Training Course –Initialization Strategies for Seamless Forecasting Systems   
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Data assimilation corrects the slope 
and mean depth of the equatorial 
thermocline

Need for data assimilation: Correction of model error  



Data coverage for Nov 2005
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Changing observing system is 

a challenge for consistent 

reanalysis 

especially in the presence of 

systematic model error
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Balmaseda et al 2007
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This can be alleviated  by including a bias correction term to the model 

tendencies, which extrapolates the observational information into the past

The explicit treatment of model bias in assimilation also allows imposing 

different dynamical balances for the increment and bias, 

The bias correction has two terms

Ƃ estimated offline from the well observed period

b’ estimated online from assimilation increments

Changes in observing system induce spurious variability in ocean 

reanalyses 
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  EQATL Depth of the 20 degrees isotherm 

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
Time
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Assim NoAssim Bias corrected Assim

Importance of treatment of model error in ocean data assimilation 

The extrapolation to the past of the PIRATA information alleviates the problem of  

spurious temporal variability

Balmaseda et al 2007

The observing system will always be changing:

To achieve temporal reliable reanalyses it is important to extrapolate the observation 

information into the past.

This is an important  difference with 
respect to  the  atmos data assimilation, 

where FG is assumed unbiased



DA+bias correction: Improved temporal variability
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Data Assimilation improves the forecast skill

Contribution of Ocean Data Assimilation to 20 years 

of Progress on ENSO prediction at ECMWF



Quantifying the value of observational  information

The outcome may depend on the coupled system   

In a good system information may be redundant, but not detrimental. 

Increase (%) in MAE of SST forecasts 

from removing external information

 (1-7 months)
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Experimentsiments conducted with the ECMWF S3 
SST  (SYNTEX System Luo et al 2005, Decadal Forecasting Keenlyside et al, 2008)

SST+ Atmos observations (fluxes from atmos reanalysis)

SST+ Atmos observations+ Ocean Observations (ocean reanalysis)

Balmaseda and Anderson 2009, GRL
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Perceived Paradigm for initialization of coupled forecasts

Real world Model world

Medium range
Full initialization: Being close to the real 
world is perceived as advantageous.  
Model  slowly drift to its own mean state.

Decadal or longer
Anomaly initialization: Avoid 
forecast drift by initializing around the 
model mean state

Anomaly initialization is not the same as model attractor initialization

Seasonal?

At first sight, this paradigm would not allow a seamless prediction system. 

So far we have seen some Caveats of Full Initialization:

Initialization shock resulting from unbalanced states

Non-linearities  and non-stationarity can sometimes render the a-posteriori calibration invalid



Anomaly Initialization 

Original purpose: to avoid expensive 
calibration. The model climatology does not depend 
of forecast lead time. Cheaper in principle than 
reforecasts in full initialization.

But reforecasts are still needed for skill estimation.
And calibration is still needed in practice.

Definition of the anomaly? It needs an existing 
reanalyses from which compute anomalies

Long 

coupled 

integration

Model climatology 
+observed anomaly

)]()[( xxHyyKxx −−−+= ffa

Acknowledgment of existence of model error during 
initialization.

Model error is not corrected (“bias blind algorithm”):

Full Initialization

As Medium range but:
Ocean Model bias taken into account during DA.

A posteriori calibration of forecast is needed. Calibration 
depends on lead time.

If uncoupled initialization: the model during the 
initialization is different from the forecast model. Bias 
correction estimated during initialization can not be 
applied during the forecasts
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Balmaseda, JMR, 2017
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Medium Range:  Singular 

Vectors

Are Singular Vectors a valid approach for  operational seasonal forecasts?

We need the TL& Adjoint of the full coupled model is required.          

BUT…

The linear assumption would fails for the atmosphere at lead times relevant 

for seasonal (~>1month).

Alternatives

1. Other approaches for optimal sampling of initial condition 

uncertainty:

• Breeding Vectors   (NASA, BoM. Not shown here)

• SV using Generalized Linear Propagators 

2. Sample known i.c. uncertainties, without considering  optimality

Uncertainty in initial conditions may not be the dominant source of error



Generalized Linearized Propagator (not necessary tangent linear) 

Given a final N and initial norm L, the growth in x can be measured 
by  

Optimal perturbations are those that maximize λ

Generalized Singular Vector Problem  (I) 

Different ways of estimating the Linear Propagator  P(τ)

I. Empirical (or Inverse modelling): basically a regression                                       
II. A simplified linear  dynamical model   (equilibrium atmosphere rather than tangent linear)
III. A hybrid system: Ocean GCM coupled to a simplified atmosphere

Initial 

pdf
forecast 

pdf

Linear propagator
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Linear Propagator estimated empirically via regression model  (Inverse modelling) 

• From  temporal records of observations  

von Storch and Xu  1990  MJO       (POPs Principal Oscillation Patterns)
Blumenthal               1991 ENSO      
Penland and Sadershmuck 1995, ENSO  (inverse modelling)

• From  temporal records of model evolution 

Xue et al 1997a,b; Fan et al 1999       ENSO
Hawkins and Sutton 2009                   Decadal Prediction AMOC

This approach is based on temporal sampling of existing timeseries: Difficult to capture flow dependence or errors of the day. 

Judgement: not appropriate for ensemble generation in operational systems. 

These are powerful tools for a-posteriori diagnostics of ensemble statistics for evaluation of forecasts;.  Ensemble 
Sensitivity. Magnusson 2017 QJRMS

Generalized Singular Vector Problem (II) 

Penland and Sadershmukh 1995

Initial 
SST

Final 
SST



ENSEMBLE GENERATION

•Representing Known Ocean Analysis  Uncertainties at ECMWF 

•Seasonal versus Medium Range
•Source of  Uncertainty

•Different Strategies
Uncertainty in wind stress and  SST

Uncertainty on ocean reanalyses spin-up

Uncertainty in missing processes

(sea ice in SEAS4 by analogues)

Other surface fluxes

Observation representative errors

2002

2011

2016

SDV of Wind Stress Perturbation 

• Create data base with errors in the monthly anomalies of  wind stress, 

arranged by calendar month:

• Random draw of monthly perturbations, applied during the ocean 

analyses. 

• Create a centered ensemble of 5 reanalysis is constructed 

symmetric wind perturbations    -P2  -P1 0  P1 P2
-



A glance at other perturbations

SDV SST SE New (V3) 

SDV SST SE OLD (V2) SDV  Abs Solar   

SDV  PME   SDV  SIC Apr  

SDV  SIC Oct  

Uncertainty representation in ORAS5

Multivariate - Updated data sets – 2 temporal scales – Multiple uncertainty sources

Still conservative: it does not sample error in the mean. 

Zuo et al 2017, Hirahara et al 2016
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Perturbing the Observations 

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER 

FORECASTS

Regular thinning Random sampling

Representativeness error 

• 1) Profile displacement and stretching

• 2) Thinning with random seed in different ensemble members:   

• More observations are used in the ensemble

• Used in ensembles of the ocean reanalyses.

+ forcing perts

+ other obs perts

30Zuo et al 2017, Tech. Memo 795

Thinning of Sea Ice Concentration Observations



What about the ensemble spread in coupled data assimilation?

Compare ensemble spread of CERA-20C with equivalent uncoupled ocean reanalysis.

Uncoupled: Forcing and SST perturbations . By design, only capture seasonal dependence

Coupled:     Spread generated by coupling. SST from HadISST.

same observations, same data assimilation, same observation perturbations

We diagnose the flow dependence of the spread: Decadal, interannual, intraseasonal

Observation 
uncertainties

Model 
uncertainties

Model forcing 
uncertainties

Reanalysis 
uncertainties



1900s

1940s

1970s

2000s

ORA-20C CERA-20CSolar radiation

Decadal variations of spread



Zoom  on  1996-1997: Onset of El Nino        
Equatorial daily time series of actual reanalysis fields  

Coherent behaviour among variables SST-Precipation-Wind and thermocline response

Seasonal cycle, intraseasonal variability and onset of El Nino can be appreciated

SST Thermocline depth Zonal Wind Stress Fresh Water Flux



Coherent spread between ocean and atmopheric variables only at seasonal time scales (by design)

Ocean variables -SST and Thermocline depth- spread show  intraseasonal –TIWs- and interannual modulation

Zoom  on  1996-1997: Onset of El Nino        
Equatorial daily time series of UNCOUPLED ensemble spread  

SST Thermocline depth Zonal Wind Stress Fresh Water Flux



Zoom  on  1996-1997: Onset of El Nino        
Equatorial daily time series of COUPLED ensemble spread  

Coherent behaviour among variables SST-Precipation-Wind and thermocline at  seasonal-intraseasonal-interannual time scales 

SST Thermocline depth Zonal Wind Stress Fresh Water Flux

Artefact:
Monthly modulation 

of HadISST spread

Artefact:
Spread collapses at 

TAO mooring 

locations



Summary Initialization

36

• Criteria to design a good Initialization of Earth System:

• Reduce initialization shock: coupled DA contributes to more balance I.C.

• Drift and calibration: Historical and stable records of initial conditions consistent with real time needed for 

calibration: bias correction, reanalyses

• Important to exploit observational information and deal with the non stationary  observing system

• Initialization of the ocean (focus on seasonal forecasting)

• Important to initialize the dynamical and thermodynamic process

• Data assimilation changes the ocean mean state. Therefore, consistent ocean reanalysis requires an explicit 

treatment of the bias

• Assimilation of ocean observations reduces the large uncertainty (error) due to the forcing fluxes. 

Initialization of Seasonal Forecasts needs SST, subsurface temperature, salinity and altimeter derived sea 

level anomalies.  

• Different approaches to initialization: full versus anomaly initialization

• Ensemble generation for ocean initial conditions: 

• sampling known uncertainty. Next step is to sample model error in ocean.

• Coupled reanalysis should represent better the flow dependent uncertainty
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