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Outline

• Motivation

• Calibration methods

• Training data sets

• Multi-model forecasts

This lecture is focussed mostly on application to medium-range forecasts, 

but the theory and methods are general.

It is only an introductory lecture: some of you may already be working with 

more advanced methods than those described
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Motivation

• Raw, uncalibrated ensemble forecasts contain forecast bias and errors in spread

• The goal of calibration is to correct for such deficiencies, i.e. to construct predictions 
with statistical properties similar to the observations

• A number of statistical methods exist for post-processing ensembles

• Calibration needs a record of prediction-observation pairs

– In the (distant) past, these might come from e.g. the previous 2 months of operational forecasts

– Nowadays, make use of large re-forecast sets covering many previous years, to allow a much more 

accurate calibration

– “Observations” might be weather station data, or gridded global analyses

• Calibration of point forecasts is particularly successful at locations with long historical 
data records

• Calibration is often a form of downscaling
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Calibration methods

• Bias correction

• Ensemble dressing

• Bayesian model averaging

• Non-homogenous Gaussian regression

• Logistic regression

• Analogue method
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• As a simple first-order calibration, a bias correction can be applied:

• This correction is added to each ensemble member, i.e. spread is not affected 

• Particularly useful/successful at locations with features not resolved by model and 

causing significant bias

Bias correction
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with: ei = ensemble mean of the ith forecast

oi = value of ith observation

N = number of observation-forecast pairs
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Bias correction

Station:  ULAN-UDE  (# 30823, Height: 515m) Lead: 120h
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Ensemble dressing

• Define a probability distribution around each ensemble member (“dressing”)

• A number of methods exist to find appropriate dressing kernel (“best-member” dressing, 
“error” dressing, “second moment constraint” dressing, etc.)

• Average the resulting nens distributions to obtain final pdf

• Consider bias correcting the ensemble first
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Ensemble Dressing

• (Gaussian) ensemble dressing calculates the forecast probability for the 

quantiles q as:

• Key parameter is the standard deviation of the Gaussian dressing kernel 

• One simple approach: “best member” dressing, take standard deviation from 

r.m.s. difference of (obs-best member) from training set.

with: Φ = CDF of standard Gaussian distribution

xi = bias-corrected ensemble-member
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Ensemble Dressing

• A more common approach: second-moment constraint dressing

• BUT: this can give negative or unstable variances, if model is already near to or 

over-dispersive.

• Ensemble dressing to generate a pdf is only suitable for under-dispersive forecasts.
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• BMA is closely linked to ensemble dressing

• Differences:

– dressing kernels do not need to be the same for all ensemble members

– different estimation method for kernels

• Useful for giving different ensemble members (models) different weights:

• Estimation of weights and kernels simultaneously via maximum likelihood, i.e. 

maximizing the log-likelihood function for training data:

Bayesian Model Averaging
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with: w1 + we (nens - 1) = 1

g1, ge = Gaussian PDF’s
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BMA: example

90% prediction interval of BMA

OBS
single model

ensemble members

Ref: Raftery et al., 2005, MWR
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BMA: recovered ensemble members

OBS

single model

ensemble members

100 equally likely values

drawn from BMA PDF

Ref: Raftery et al., 2005, MWR
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• In order to account for existing spread-skill relationships we model

the variance of the error term as a function of the ensemble spread sens:

• The parameters a,b,c,d are fit iteratively by minimizing the CRPS of the training data 

set

• Interpretation of parameters:

‒ bias & scaling/general performance of ensemble-mean are reflected in a and b

‒ large spread-skill relationship: c ≈ 0.0, d ≈ 1.0

‒ small spread-skill relationship: d ≈ 0.0

• Calibration provides mean and spread of Gaussian distribution

(called non-homogenous since variances of regression errors not the same for all values of the predictor, i.e. non-

homogenous – different from BMA)

Non-homogenous Gaussian Regression
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• Logistic regression is a statistical regression model for Bernoulli-distributed 

dependent variables

• P is bound by 0,1 and produces an s-shaped prediction curve

‒ steepness of curve (β1) increases with decreasing spread, leading to sharper forecasts (more 

frequent use of extreme probabilities)

‒ parameter β0 corrects for bias, i.e. shifts the s-shaped curve

‒ Estimate β0  and β1 by fitting data to maximize likelihood, in our case using ensemble means 

from a forecast set and corresponding event outcomes

Logistic regression for event probabilities
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How does logistic regression work?

+ training data

100 cases (EnsMean)
(height = obs yes/no for ens mean>0)

+ test data

(51 members)
(height = raw prob)

event threshold

event observed
yes/no (0/1)

-5 0 5
ens-mean anomaly
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1.0

p
ro

b
a

b
ili

ty

file: logreg_nh096_ev0a0: 0.2844 a1:  1.019

calibrated prob

GP: 51N, 9E, Date: 20050915, Lead: 96h
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file: logreg_nh168_ev1a0: 0.8185 a1: 0.4136

Example: LR-Probability worse in this case

+ training data

100 cases (EM)
height of obs y/n

+ test data

(51 members)
(height = raw prob)

event threshold

event observed
yes/no (0/1)

calibrated prob

GP: 51N, 9E, Date: 20050915, Lead: 168h
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file: logreg_sh168_ev1a0:  2.017 a1:  1.815

Example: LR-Probability (much) better!

+ training data

100 cases (EM)
(height = obs y/n)

+ test data

(51 members)
(height = raw prob)

event threshold

event observed
yes/no (0/1)

calibrated prob

GP: 15.5S, 149.5W, Date: 20050915, Lead: 168h
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Analogue method

• Full analogue theory assumes a nearly infinite training sample

• Nonetheless, can be justified under simplifying assumptions:

– Search only for local analogues

– Match the ensemble-mean fields

– Consider only one model forecast variable in selecting analogues

• General procedure:

– Take the ensemble mean of the forecast to be calibrated and find the nens closest forecasts to this in the 

training dataset

– Take the corresponding observations to these nens re-forecasts and form a new calibrated ensemble

– Construct probability forecasts from this analogue ensemble 
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Analogue method

Ref: Hamill & Whitaker, 2006, MWR

Forecast to be calibrated

Closest re-forecasts

Corresponding obs

Probabilities given by 

analog-ens

Verifying observation
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Training datasets

• All calibration methods need a training dataset, containing a number of forecast-observation pairs 

from the past

– The more training cases the better

– The forecast system used to produce the training dataset should be as close as possible to the 

operational forecast system  (easy for the model, may be less easy for initial conditions)

• For research applications often only one dataset is used to develop and test the calibration 

method. In this case cross-validation has to be applied.

• For operational applications one can use:

– Operational available forecasts from e.g. past 30-40 days

– Data from a re-forecast dataset covering a larger number of past forecast dates / years

PREDICTABILITY TRAINING COURSE 2023: POST-PROCESSING OF ENSEMBLE FORECASTS 20



October 29, 2014

“Ideal” Reforecast Data Set

2022

Feb Mar Apr
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Early motivating results from Hamill et al., 2004

Bias corrected

with refc data

LR-calibrated

ensemble

Bias corrected

with 45-d data

Achieved with 

“ideal” 

reforecast system!

Raw ensemble
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ENS and EXT Reforecasts (at present)

2022

March April
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 01 02 03 04

1998

1999

2000

2001

2002

.

.

.

.

2013

2014

2015

2016

2017

Thursday

Used by ENS in EFI and SOT

Used in monthly forecast
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Changes to ENS and EXT ensemble re-forecasts

• ENS and EXT ensemble system now enables the production 
of two reforecast data sets, to be used by:

– EFI model climate and 15-day ENS calibration

– Monthly forecast anomalies and verification

• Re-forecast configurations have to be an optimal compromise 

between affordability and needs of different applications

• At present, both re-forecasts are still 11 members, twice per 

week

• Will change in Cy49r1(TBC) to 11 members every 2 days 

(EXT) or every 4 days (ENS)
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Reforecast calibration and multi-model forecasts

Reference: Hagedorn et al, 2012

• One goal of the TIGGE* project was to investigate whether multi-model predictions are an 

improvement compared to single model forecasts

• The goal of using reforecasts to calibrate single model forecasts is also to provide improved 

predictions

• Questions:

– What are the relative benefits (and costs) of both approaches?

– What are the mechanisms behind any improvements?

– Which is the “better” approach?

* TIGGE stands for: The International Grand Global Ensemble (originally THORPEX interactive GGE). It provides a research database of 

medium-range ensemble forecasts from 10 forecasting centres, downloadable with a delay of 48h.
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850 hPa Temperature, Northern Hemisphere, DJF 2008/09
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Comparing 9 TIGGE models & the resulting multi-model mean (MM)

T850hPa, DJF 2008/09

NH (20°N - 90°N)

DMO vs. ERA-interim

Symbols used for

significance level

vs. MM (1%)
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850 hPa Temperature, Northern Hemisphere, DJF 2008/09
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Comparing 4 best TIGGE models & the MM

T-850hPa, DJF 2008/09

NH (20°N - 90°N)

DMO vs. ERA-interim
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850 hPa Temperature, Northern Hemisphere, DJF 2008/09
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Comparing 4 TIGGE models, MM, EC-CAL

T-850hPa, DJF 2008/09

NH (20°N - 90°N)

DMO & refc-cali vs. ERA-interim
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2m Temperature, Northern Hemisphere, DJF 2008/09
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Comparing 4 TIGGE models, MM, EC-CAL

2m Temperature, DJF 2008/09

NH (20°N - 90°N)

BC & refc-cali vs. ERA-interim
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T2m, NH, DJF 2008/09; RMSE (solid) Spread (dotted)

2 4 6 8 10 12 14

Lead Time / days

1

2

3

4

5

R
M

S
E

 &
 S

P
R

E
A

D
 /

 K

TIGGE

CMC

ECMWF

MetOffice

NCEP

Mechanism behind improvements

2m Temperature, DJF 2008/09

Northern Hemisphere (20°N - 90°N)

Verification: ERA-interim
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RMSE (solid)
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T2m, NH, DJF 2008/09; RMSE (solid) Spread (dotted)
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T2m, NH, DJF 2008/09; RMSE (solid) Spread (dotted)
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Verification: ERA-interim

EC-CAL:

significant reduction of RMSE

(below MM-RMSE after day5) 

improved SPR-ERR relation

(perfect for “pure” NGR,

but greater RMSE reduction of

“MIX” calibration more important

than better SPR-ERR)
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An alternative view of TIGGE …

Reference: Hamill, 2012

• Examining precipitation forecasts over the US

• Four high skill models; compare ECMWF “re-forecast calibrated” with multi-model (no re-

forecasts)

Conclusions:

• “Raw multimodel PQPFs were generally more skilful than reforecast-calibrated ECMWF PQPFs 

for the light precipitation events but had about the same skill for the higher-precipitation events”

• “Multimodel ensembles were also postprocessed using logistic regression and the last 30 days of 

prior forecasts and analyses; Postprocessed multimodel PQPFs did not provide as much 

improvement to the raw multimodel PQPF as the reforecast-based processing did to the ECMWF 

forecast.”

• “The evidence presented here suggests that all operational centers, even ECMWF, would benefit 

from the open, real-time sharing of precipitation forecast data and the use of reforecasts.”
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Multi-model seasonal forecasting

• Scientific exploration: DEMETER and ENSEMBLES

• First operational system: EUROSIP

• New incarnation: C3S from COPERNICUS

PREDICTABILITY TRAINING COURSE 2023: LONG-RANGE FORECASTING SYSTEMS



Reliability diagrams  (T2m > 0)
1-month lead, start date May, 1980 - 2001

DEMETER: multi-model vs single-model
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single-model [54 members] multi-model [54 members]

1-month lead, start date May, 1987 - 1999 

DEMETER: checking impact of ensemble size

BSS
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Reliability diagrams  (T2m > 0)

1-month lead, start date May, 1987 - 1999

0.170
0.959
0.211

0.222
0.994
0.227

Hagedorn et al. (2005)
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ENSO Variance adjustment
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This very simple calibration scales the forecast climatological variance 

to match the observed climatological variance. The scaling is 

seasonally dependent. This calibration can substantially improve 

forecast products (and their verification scores). This calibration was 

used for our previous system but was turned off in SEAS5. It is used in 

C3S Nino plots.

SEAS5 verification includes the amplitude ratio, which should be used a 

posteriori to interpret the Nino plumes. This is important for forecasts of 

March, April and May.

(Jan starts)



Past performance

Example of single model Nino SST forecast with simple calibration (bias and variance adjustment) 



Past performance

Example of multi-model Nino SST forecast with fuller calibration

Each model bias 

corrected and 

variance adjusted; 

spread of multi-model 

combination than 

adjusted to match 

past performance
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Summary on multi-model and calibration

• What are the relative benefits/costs of both approaches?

– Both multi-model and a reforecast calibration approach improve probabilistic predictions, in 

particular for (biased and under-dispersive) near-surface parameters

• What are the mechanisms behind the improvements?

– Re-forecast calibration is effective at correcting local mis-representations in the model, and 

can estimate forecast uncertainty well, particularly in the medium-range

– Multi-model approach can reduce forecast error as well as increase spread; it is particularly 

powerful at longer leads; sometimes it pays to be selective in which models are used

• Which is the “better” approach?

– A combination of the two approaches is the most powerful, for example in C3S seasonal

– For the medium range, a single well-tuned ensemble system is enough, and is easier to 

implement operationally
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Overall summary

• The goal of calibration is to correct for known forecasting system deficiencies

• A number of statistical methods exist to post-process ensembles

• Each method has its own strengths and weaknesses

– Analogue methods seem to be useful when large training dataset available

– Logistic regression can be helpful for extreme events not seen so far in training dataset

– NGR method useful when strong spread-skill relationship exists, but relatively expensive in 

computational time

• Greatest improvements can be achieved on local station level

• Bias correction constitutes a large contribution for all calibration methods

• ECMWF re-forecasts are a very valuable training dataset for calibration

• ECMWF leaves most calibration to its users

• Calibration cannot guarantee reliable seasonal forecasts
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