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If you cannot predict the weather a week ahead, how can you 

predict the climate for the coming season?



➢ Numerical models used to predict weather and climate are based on the same physical principles

e.g. Newton’s laws of motion and the laws of thermodynamics

➢ However, forecasting the weather is a different problem to forecasting the climate

➢ Weather prediction – predictability of the first kind

▪ Predictability horizon is severely limited by the chaotic nature of the atmosphere → detailed evolution of the 

weather becomes unpredictable after O(10 days)

▪ Predictability relies on sensitive dependence on initial conditions

➢ Climate prediction – predictability of the second kind

▪ Does not aim to forecast individual weather patterns

▪ Rather, to forecast the statistics of the climate system averaged over time and space

▪ Predictability relies on the sensitivity of the system to its boundary conditions (e.g. radiative forcing) and on the 

long memory of initial conditions of slowly evolving components of the climate system (e.g. the ocean, land 

surface)

▪ Predictability horizon for climate forecasts is much longer than for weather forecasts

Predictability of the first and second kind
(Ed Lorenz: Climatic predictability, 1975)





Science (1998)



Aspects of the tropical atmosphere do not follow the deterministic chaos paradigm:

• Tropical flow and rainfall patterns, especially over the ocean, are strongly coupled to the 

underlying SSTs which show little sensitivity to initial conditions of the atmosphere

• Even with very large changes in the atmospheric IC (as large as the climatological 

variability), the resulting large-scale wind and rainfall pattern in certain tropical regions do 

not diverge

A unique and fundamental property of the tropical atmosphere:

Tropical large-scale seasonal circulation and rainfall are almost completely determined 

by the boundary conditions of SSTs.

1. It should be possible to predict the large-scale seasonal tropical circulation and precipitation 

for as long as the SSTs can be predicted

2. Tropics act as a source of e.g. Rossby waves which can propagate into the distant extra-

tropics → Predictability in the Midst of Chaos

The extent to which this high predictability in the atmosphere can be realized 

depends on our ability to predict the SST itself.



Assessing the skill of SEAS5



Local SST bias is a function of 

▪ lead time

▪ season

System 5 (Nov 2017 onwards)

System 4 (Nov 2011 - Oct 2017)

System 3 (March 2007 - Nov 2011)

Nino3.4 SST drift



In a perfect model:

RMSE ≃ ensemble spread

In SEAS5:

actual RMS errors  > “perfect model” errors

or ensemble spread too small (overconfidence)

SST forecast performance Nino3.4 SST forecast error and ensemble spread:

lead-time dependence (all seasons)

RMSE forecast error

Ensemble spread

RMSE of persistence

forecast anomaly correlation

persistence anomaly correlation



What is a perfect model ensemble?

▪ Perfect sampling of the underlying 

probability distribution of the true state

▪ Over a large number of forecasts, the 

statistical properties of the truth are identical 

to the statistical properties of a member of 

the ensemble

▪ I.e., the truth is indistinguishable from the 

ensemble

▪ Time-mean RMSE of the ensemble mean 

equals the time-mean ensemble spread

→ spread is an indication of perfect model 

error

From Palmer et al. (2006)



RMSE forecast error

Ensemble spread

RMSE of persistence

forecast anomaly correlation

persistence anomaly correlation

Nino3.4 SST forecast error and ensemble spread:

seasonal dependence (lead-time: 5 months)

Spring predictability barrier
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System 4

Introduced: 2011

SEAS5 

Introduced: 2017

Atmosphere
Cycle 36r4

TL255 L91

Cycle 43r1

TCo319 L91

Ocean
NEMO v3.0

ORCA 1.0-L42

NEMO v3.4

ORCA 0.25-L75

Sea ice model Sampled climatology LIM2

Atm. initial conditions ERA-Interim/Ops ERA-Interim/Ops

Ocean and sea ice initial 

conditions
OCEAN4 OCEAN5

System 4 vs SEAS5

SEAS5 documentation: Johnson et al. (2019)



CRPSSSEAS5 - CRPSSSEAS4
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DJF JJA

Improved 

ENSO skill

Reduced skill in 

eastern Indian Ocean

Reduced skill in NW AtlanticImproved skill around sea ice edge

Global 2m temperature skill differences

All plots show seasonal means at one month forecast lead (i.e. month 2 to 4 of the forecast) 

and using 25 ensemble members, unless stated otherwise



Nino3.4 SST bias in DJF

System 4

SEAS5

Large improvement in 

equatorial cold tongue bias



Nino3.4 SST skill

bias anomaly correlation

Improvement in Niño 3.4 skill, particularly at longer lead times   
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Cold SST anomalies in the eastern Indian Ocean are too large, too variable and too frequent

Results in large errors in skill in the eastern box of Indian Ocean Dipole index

SEAS4

SEAS5

month 2-4

month 5-7

Verification month Verification month Verification month
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Bias Amplitude ratio RMSE

Eastern Indian Ocean  
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▪ Poor representation of the decadal 

variability in the Northwest Atlantic

▪ Related to increased resolution of 

new ocean analysis system

SEAS4

ERA-Interim 

SEAS5

ERA-Interim

DJF SST anomalies in Northwest Atlantic SEAS5 DJF SST bias

Northwest Atlantic 



SEAS4 used a simple empirical 

scheme that only captured the trend 

but not the interannual variability

Adding LIM2 improves skill in 

predicting sea ice but introduces 

sea ice biases

→ Largest biases in summer

→ Biggest skill improvements  

in autumn
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JJA

SON

SEAS5 biasSEAS5 – SEAS4 RMSE Artic sea ice 



Increased skill in T2m  north of 70⁰ N associated 

with improved sea ice prediction
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ASO mean 2 m temperature north of 70⁰ N 

July start - one month lead

Prognostic sea ice model introduces 

interannual variability in arctic sea ice extent

ASO mean sea ice extent north of 70⁰ N 

July start - one month lead

Artic sea ice 



Zonally averaged profiles of 

▪ temperature (colour) 

▪ zonal wind (contours)

Largely reduced tropospheric 

temperature biases in DJF

Too strong and poleward 

displaced jets, especially in JJA

Strong cold tropopause biases

From Johnson et al. (2019)

Bias in SEAS5

Bias in System 4



Bias of geopotential height at 500 hPa

Mean-state changes in line with tropopause warming in SEAS5 

Strong jet biases in JJA

From Johnson et al. (2019)



From Johnson et al. (2019)

Ensemble mean correlation skill for 2m temperature



Ensemble mean correlation skill for precipitation

From Johnson et al. (2019)



Reliability diagrams

From Johnson et al. (2019)

2m temperature upper tercile events in DJF

Tropics Europe

Overconfident forecasts 



Hindcasts of the NAO in DJF

From Johnson et al. (2019)

System 4

SEAS5

ERA-I



Hindcast skill of the NAO, AO and PNA in DJF

Nov start dates 1981-2016, 51 ensemble members

ensemble

size 

uncertainty

sample

years

uncertainty

Two types of sampling uncertainty 



C3S multi-model hindcast period



“ideal” situation “real” situation

Climatology

Forecast

observation

Seasonal forecasting in the extra-tropics

with low signal-to-noise ratios



Seasonal forecasts of the winter NAO

April 2014
Ensemble hindcasts of the NAO index 1993-2012

with the Met Office model (GloSea GA3)

r=0.62      S/N=0.2

Scaife et al. (GRL 2014)

Siegert et al. (JClim 2016)

calibrated

non-calibrated



Signal and noise 

xm,n :   variable x with member m and year n
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ensemble mean variance
→ “signal”

variance of ensemble members about 
ensemble mean → “noise”

→ S/N = VARsignal / VARnoise

Variance:
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Kumar (MWR 2009)

Correlation skill and signal-to-noise (S/N) ratio

“The expected value, however, is only realized for long verification time 

series. In practice, the verifications for specific seasons seldom exceed a 

sample size of 30. The estimates of skill measure based on small 

verification time series, because of sampling errors, can have large 

departures from their expected value.”

The expected value for various measures of skill for seasonal climate predictions is determined by the S/N ratio. 

expected correlation
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Probability of expected correlation for a given realised value of skill

r=0.3 r=0.5 r=0.7

verification sample size

50

20

expected correlation



The Ratio of Predictable Components (RPC)

Properties of a perfect model ensemble

▪ Time-averaged ensemble spread approx. equals RMSE of ensemble mean forecast

▪ Correlation skill (aka potential skill): correlation(ensemble mean, ensemble member)

▪ Observed correlation ≤ perfect model correlation

▪ RPC of a perfect ensemble approx. equals 1

Predictable Components (PCs) … predictable part of the total variance

observed PCobs … estimated from explained variance = r2(obs, ensmean)

model PCmodel … estimated from ratio of signal variance to total variance

𝑅𝑃𝐶 =
𝑃𝐶𝑜𝑏𝑠
𝑃𝐶𝑚𝑜𝑑𝑒𝑙

≥
𝑟 𝑜𝑏𝑠, 𝑒𝑛𝑠 𝑚𝑒𝑎𝑛

Τ𝑉𝐴𝑅𝑠𝑖𝑔𝑛𝑎𝑙 𝑉𝐴𝑅𝑡𝑜𝑡𝑎𝑙



Anscombe’s quartet

Illustrative example of correlation drawbacks after Anscombe (1973):

▪ Four pairs of x-y variables 

▪ The four y variables have the same mean (=7.5), variance (=4.1) and correlation (=0.82)

▪ However, distributions of variables are very different

Normally distributed,

“well behaved”

Not normally distributed,

non-linear relationship
Perfect linear relationship,

Except for one outlier
No relationship

with one outlier

Anscombe (Amer. Statist. 1973)



The signal-to-noise “conundrum” or “paradox”

Eade et al. (GRL 2014)

RPC of DJF MSLP in GloSea5

The real world seems to have higher predictability than the model

(𝐑𝐏𝐂 =
𝐏𝐂𝐨𝐛𝐬
𝐏𝐂𝐦𝐨𝐝𝐞𝐥

)



Thank you!
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