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If you cannot predict the weather a week ahead, how can you

predict the climate for the coming season?



Predictability of the first and second kind

(Ed Lorenz: Climatic predictability, 1975)

» Numerical models used to predict weather and climate are based on the same physical principles
e.g. Newton’s laws of motion and the laws of thermodynamics

» However, forecasting the weather is a different problem to forecasting the climate

» Weather prediction — predictability of the first kind

= Predictability horizon is severely limited by the chaotic nature of the atmosphere - detailed evolution of the
weather becomes unpredictable after O(10 days)

» Predictability relies on sensitive dependence on initial conditions

» Climate prediction — predictability of the second kind
= Does not aim to forecast individual weather patterns
= Rather, to forecast the statistics of the climate system averaged over time and space

= Predictability relies on the sensitivity of the system to its boundary conditions (e.g. radiative forcing) and on the
long memory of initial conditions of slowly evolving components of the climate system (e.g. the ocean, land
surface)

= Predictability horizon for climate forecasts is much longer than for weather forecasts
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Predictability in the Midst of
Chaos: A Scientific Basis for

Climate Forecasting
J. Shukla

The Earth's atmosphere is generally considered to be an example of a chaotic
system that is sensitively dependent on initial conditions. It is shown here that
certain regions of the atmosphere are an exception. Wind patterns and rainfall
in certain regions of the tropics are so strongly determined by the temperature
of the underlying sea surface that they do not show sensitive dependence on
the initial conditions of the atmosphere. Therefore, it should be possible to
predict the large-scale tropical circulation and rainfall for as long as the ocean
temperature can be predicted. If changes in tropical Pacific sea-surface tem-
perature are quite large, even the extratropical circulation over some regions,
especially over the Pacific-North American sector, is predictable.

At the beginning of the 20th century 1t was
hypothesized that 1t should be possible to
predict weather by solving the mathematical
equations that describe the physical laws that
govern the motion of amr. It took several
decades to develop an appropriate set of

that aspects of the tropical atmosphere do not
conform to the above definition of chaos. The
tropical flow patterns and rainfall, especially
over the open ocean, are so strongly deter-
mined by the underlying sea-surface temper-
ature (SST) that they show little sensitivity to

predict large-scale changes in the winter sea-
son mean circulation over North America
several months 1n advance, as indeed was the
case for the 1997-1998 El Nifo. However,
the extent to which this apparent high poten-
tial predictability of the tropical and extra-
tropical atmosphere can be realized 1n routine
forecasting will depend on our ability to pre-
dict the SST itself.

The numerical model used n this research
has been described (3). The dynamic equa-
tions and the numerical techniques used to
integrate the model are the same as those
used by the U.S. National Weather Service
for routine weather prediction, and the accu-
racy of short-range weather forecasts made
with this model is comparable to the state-of-
the-art weather forecast models.

Two sets of simulations were carried out
with the same prescribed SST but quite large
differences in the mmtial conditions of the
atmosphere. This simulation requires a selec-
tion of two very different mitial conditions.
Rather than choosing them arbitrarily, or con-
structing them artificially, atmospheric states
observed during the past 50 years were cho-
sen. The data show that the Southern Oscil-

Science (1998)



Aspects of the tropical atmosphere do not follow the deterministic chaos paradigm:

» Tropical flow and rainfall patterns, especially over the ocean, are strongly coupled to the
underlying SSTs which show little sensitivity to initial conditions of the atmosphere

» Even with very large changes in the atmospheric IC (as large as the climatological
variability), the resulting large-scale wind and rainfall pattern in certain tropical regions do

not diverge

1. It should be possible to predict the large-scale seasonal tropical circulation and precipitation
for as long as the SSTs can be predicted

2. Tropics act as a source of e.g. Rossby waves which can propagate into the distant extra-
tropics - Predictability in the Midst of Chaos

The extent to which this high predictability in the atmosphere can be realized
depends on our ability to predict the SST itsellf.
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Anomaly correlation
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What is a perfect model ensemble?

= Perfect sampling of the underlying
probabllity distribution of the true state

= Over a large number of forecasts, the

statistical properties of the truth are identical

to the statistical properties of a member of
the ensemble

* |.e., the truth Is indistinguishable from the
ensemble

* Time-mean RMSE of the ensemble mean
equals the time-mean ensemble spread

—> spread is an indication of perfect model
error

From Palmer et al

. (2006)

Box A The relationship between spread and ensemble mean
RMS error in a perfect ensemble

In a perfect ensemble, i.e. a perfect sampling of the under-
lying probability distribution of truth, then, over a large
number of ensemble forecasts, the statistical properties of
the true value X7 of X are identical to the statistical prop-
erties of a member of the ensemble, X, (when that member
is removed from the ensemble). For the following analy-
sis of spread and skill, we assume that the ensemble size
N s sufficiently large that removing one member from the
ensemble does not materially affect the results. Hence, for
example, the mean squared distance of the J-th member
X,(J) from the ensemble mean (X,) is identical to the
mean squared error of the ensemble mean

where (...) denotes the expectation value with respect to
a particular ensemble forecast, and ... denotes an average
over many such ensemble forecasts. Equation (A1) holds
for any J and it can be applied to a scalar quantity X or
to a vector X. In the latter case, ||...|| should be under-
stood as the Root Mean Square (RMS) or the Euclidean

norm. Taking the expectation (...) of Equation (A1) yields

(.~ ) = -

Equation (A2) implies that the time-mean ensemble spread
about the ensemble-mean forecast, should equal the time-
mean RMS error of the ensemble-mean forecast.

pa-pf

Xe(J)_ <Xe>

? (A2)

X, —(Xc)

€




Nino3.4 SST forecast error and ensemble spread:
seasonal dependence (lead-time: 5 months)
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SEASS documentation: Johnson et al. (2019)



Global 2m temperature skill differences
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All plots show seasonal means at one month forecast lead (i.e. month 2 to 4 of the forecast)
and using 25 ensemble members, unless stated otherwise



Nino3.4 SST bias in DJF
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Bias (°C)
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Cold SST anomalies in the eastern Indian Ocean are too large, too variable and too frequent

Results in large errors in skill in the eastern box of Indian Ocean Dipole index
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Related to increased resolution of
new ocean analysis system
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SEAS5 — SEAS4 RMSE SEASS bias Artic sea ice

180° 1800

SEAS4 used a simple empirical
scheme that only captured the trend
but not the interannual variability

Adding LIM2 improves skill in
predicting seaice but introduces
seaice biases

-> Largest biases in summer

-> Biggest skill improvements
in autumn
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(a) ERA-Interim DJF (b) ERA-Interim JJA
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a. SEASS DIF b. SEASS5 JJA

109 -08 -07 -06 -04 -02 02 04 06 07 08 09 1 4 _-09 08 07 06 04 02 02 04 06 07 08 09 1
[ N I S S — I

e

WeW Mew uzw oW =w o CE

c. SEAS5-SEAS4 D

L0806 04 03 02 01 01 02 03 04 05 08 L0 08 4 03 02 Dt 01 02 03 04 08 05
L I I I

iew  ew x

; : d. SEAS5-SEAS4 JJA

13333331313

From Johnson et al. (2019)



a. DJF SEASS b. JJA SEASS
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Observed frequency

1.0

2m temperature upper tercile events in DJF

0.8+

0.6+

0.4+

0.2+ .

1.0 7
Tropics
)
2 -
@
3
g
B
<
@
A
o
T T T {]{] T T T T
0.2 04 0.6 0.8 1.0 0.0 .2 0.4 0.6 0.8 1.0
Forecast probability Forecast probability

Overconfident forecasts

From Johnson et al. (2019)




Hindcasts of the NAO in DJF

31NAO i

o

1

=
s

L

| ]
——

| |
I

I
=
|
L]
T

—3- —_ -

1980 1985 1990 1995 2000 2005 2010 2015

Figure 11. Time series of a DJF NAO index derived from projecting the re-forecast 500 hPa geopotential height onto the first EOF of
ERA-Interim 500 geopotential height in the North Atlantic. Quartiles, minimum and maximum of the SEAS4 25 member ensemble are
shown in blue, while the SEAS5 25 member ensemble is shown in red and ERA-Interim reanalysis is shown in the black bars. Forecasts
were initialised in November, and the year shown is the year the ensemble was initialised. The grey diamonds indicate the ensemble mean.
Anomaly correlation values for the ensemble mean are 0.45 for SEAS4 and 0.44 for SEASS. The 95% confidence interval for sampling error

over years is 0.12 to 0.67 for SEASS.
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Anomaly correlation
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NAO hindcast skill in SEASS5 - how (un)lucky are we?

» Random samples of hindcast years with
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= Distribution of correlation
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Extreme winters will be predicted with greater reliability than before Cheshire

after the world's best long-term weather forecast model was developed Chnistopher
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Ensemble hindcasts of the NAO index 1993-2012
with the Met Office model (GloSea GA3)
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Signal and noise

X, .. variable x with member m and year n

1 N M 1 M
Mean: x = WZ Z Xmn Ensemble mean: (x,) = Mz Xmn
O m

. 1 N2
Variance: VAR;ytq = Wz Z(xm,n — x)
n m

VARota1 = VARsignal + VARypise > S/N=VA / VA

Rszgnal Rnoise

N N M
1 1 2
VARsigna1 = NZ“"") — ¥)* VARnoise = WZ Z(xm,n — (xn))
™ n m

ensemble mean variance variance of ensemble members about
- “signal” ensemble mean = “noise”



Correlation skill and signal-to-noise (S/N) ratio

The expected value for various measures of skill for seasonal climate predictions is determined by the S/N ratio.

uncertainty of correlation
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The Ratio of Predictable Components (RPC)
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Properties of a perfect model ensemble

Time-averaged ensemble spread approx. equals RMSE of ensemble mean forecast

Correlation skill (aka potential skill): correlation(ensemble mean, ensemble member)

Observed correlation < perfect model correlation

RPC of a perfect ensemble approx. equals 1
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lllustrative example of correlation drawbacks after Anscombe (1973):

» Four pairs of x-y variables

= The four y variables have the same mean (=7.5), variance (=4.1) and correlation (=0.82)

= However, distributions of variables are very different

Anscombe’s quartet
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RPC of DJF MSLP in GloSea5 (RPC =
PCmodel

Eade et al. (GRL 2014)

033 05 057 067 0.77 083 091 1 11 12 13 15 1.76 2 3

The real world seems to have higher predictability than the model



Thank you!
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