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Introduction: Model Uncertainty

• Ensemble forecasts enable a quantification of the confidence in a forecast, e.g. 10% chance of rain

• An ensemble forecast is made from multiple forecasts or “members”, each member perturbed 

with respect to the others

• The perturbations comprise 

a) different initial conditions for each member, to sample the uncertainty in our description of the initial 

state (Simon Lang’s lecture); and

b) a different forecast model for each member, to sample the uncertainty due to the model integrations or 

the “model uncertainty”

• To date, much effort has been focused on model uncertainty due to the parametrization schemes 

that describe sub-grid atmospheric physics --- representing this with stochastic perturbations gives 

rise to “stochastic physics”
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Using stochastic physics to represent model uncertainty

• Why do we represent model uncertainty in an ensemble forecast?

• What are the sources of model uncertainty?

• How do we currently represent model uncertainty in the IFS?

• Ongoing work towards process-level simulation of model uncertainty
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• In a reliable ensemble, ensemble spread is a predictor of ensemble error

i.e. averaged over many ensemble forecasts,
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For a thorough discussion of this relationship:

Martin Leutbecher’s lectures



• In an over-dispersive ensemble, 
𝑒 �̅� ≪ 𝜎 𝑥

and ensemble spread does not provide a good estimate of error.

The relatively large spread implies large uncertainty and hence, likely large error:

an “under-confident forecast”
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Ensemble reliability
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What happens when the ensemble includes no representation of model uncertainty?

• In an under-dispersive ensemble, 
𝑒 �̅� ≫ 𝜎 𝑥

The small spread implies low uncertainty and hence, small errors:

an “over-confident forecast”



Ensemble forecasts with only initial conditions perturbations
Ensemble mean RMSE (“Error”) & standard deviation (“Spread”)

Why this lack of spread?

RMS ensemble 
stdev

CY47R3

TCo399L137, dt=1200s 

30 dates (Dec 2019)

8 perturbed fcs

Windspeed (ms-1), 250hPa, 
Northern extra-tropics

Windspeed (ms-1), 250hPa, 
Tropics

T (K), 850hPa, 
Tropics

Z (dam), 500hPa, 
Northern extra-tropics

RMSE ensemble 
mean



Sources of uncertainty: initial conditions

forecast 
model

Initial time

Later lead time

Set of perturbed 
initial conditions

Set of perturbed 
forecasts

What about “model uncertainty”?

Each ensemble member sees the 
same forecast model



Dynamics

Coupled 
processes

X

DX

Physics 
parametriza-
tions PX

CX

Sources of uncertainty: inside the forecast model?

• Discretisation
• Time-integration
• Transport
• Stabilisation

• LW/SW Radiation
• Convection
• Clouds & microphysics
• Composition
• Boundary layer 
• Turbulent mixing
• Gravity wave drag

• Land-surface
• Ocean
• Sea-ice



Model uncertainty: parametrized atmospheric physics processes

Uncertainties arise due to:

• Inability to resolve sub-grid scales, 
e.g.

– Surface drag (orography/waves)

– Convection rates (occurrence / 
en/detrainment)

– Phase transitions

– Radiation transfer in cloudy skies

• Poorly constrained parameters, e.g.

– Vertical cloud-overlap (radiation)

– Composition

– Non-orographic drag



Model uncertainty: parametrized atmospheric physics processes

“Let’s take the positives”

Parametrisation schemes:

• developed/operate together

• highly tuned for best 
performance

Seek a description of uncertainty 
that retains consistencies of the 
representation of the physical 
processes.



Model uncertainty: parametrized atmospheric physics processes

e.g. profile of heating rates from 
physics parametrisations:



Model uncertainty: parametrized atmospheric physics processes
Proposal: represent uncertainties with 
a perturbation proportional to the 
profile of net physics tendencies

Stochastically Perturbed 
Parametrisation Tendencies 
(SPPT)

𝑿! = 1 + 𝑟 𝑿



Sources of uncertainty: accounting for model uncertainty

Initial time

Later lead time

Set of perturbed 
initial conditions

Set of perturbed 
forecasts

forecast 
model

forecast 
model

forecast 
modelforecast 
model

forecast 
model

forecast 
model

forecast 
modelforecast 

model

Each ensemble member sees a 
different realisation of the  
forecast model



Recall: Ensemble forecasts: with initial conditions perturbations (IP) only
Ensemble mean RMSE (“Error”) & standard deviation (“Spread”)

Why this lack of spread?

CY47R3

TCo399L137, dt=1200s 

30 dates (Dec 2019)

8 perturbed fcs

Windspeed (ms-1), 250hPa, 
Northern extra-tropics

Windspeed (ms-1), 250hPa, 
Tropics

T (K), 850hPa, 
Tropics

Z (dam), 500hPa, 
Northern extra-tropics

RMSE ensemble mean
(“error”)

RMS ensemble variance
(“spread”)



Ensemble mean RMSE (“Error”) & standard deviation (“Spread”)

CY47R3

TCo399L137, dt=1200s 

11 dates (Dec 2019/Jan 2020)

8 perturbed fcs

Windspeed (ms-1), 250hPa, 
Northern extra-tropics

Windspeed (ms-1), 250hPa, 
Tropics

T (K), 850hPa, 
Tropics

Z (dam), 500hPa, 
Northern extra-tropics

IP only

IP + SPPT* 
(*white noise 
wrt time/horizontal)

SPPT

Uncorrelated noise 
yields little benefit

Ensemble forecasts: with grid-scale model uncertainty perturbations (SPPT)



Ensemble mean RMSE (“Error”) & standard deviation (“Spread”)

CY47R3

TCo399L137, dt=1200s 

11 dates (Dec 2019/Jan 2020)

8 perturbed fcs

Windspeed (ms-1), 250hPa, 
Northern extra-tropics

Windspeed (ms-1), 250hPa, 
Tropics

T (K), 850hPa, 
Tropics

Z (dam), 500hPa, 
Northern extra-tropics

IP only

SPPT Ensemble forecasts: with fixed model uncertainty perturbations (SPPT)

Fixed perturbations 
yield increased errors

IP + SPPT* 
(*fixed perts wrt
time/horizontal)



• Simulates model uncertainty due to physics parameterisations by
• taking the net tendencies from the physics parametrisations (excl. clear-sky 

heating rates):

𝑿 = 𝑋! , 𝑋" , 𝑋# , 𝑋$

• and perturbing with multiplicative noise 𝑟 ∈ −1, +1 as:

𝑿% = 1 + 𝜇𝑟 𝑿

where 𝜇 ∈ 0,1 tapers the perturbations to zero near the surface.

Stochastically Perturbed Parametrisation Tendencies (SPPT) scheme

• History (IFS): implemented, 1998 (Buizza et al., 1999); revised, 2009 (Palmer et al., 2009), 2019 (Lock et al., 2019):
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radiation (cloudy-skies)

gravity wave drag

coming from vertical mixing schemes

convection

cloud physics

Shutts et al. (2011, ECMWF Newsletter);  
Palmer et al., (2009, ECMWF Tech. Memo.);
Lock et al., (2019, QJRMS)

𝑟 ∈ −1,+1

𝜇 ∈ 0,1



Clear-sky 
stratospheric 
cooling

SPPT perturbations: why exclude clear-sky heating rates? 
• SPPT perturbs net physics tendencies (excluding clear-sky heating rates) with 

multiplicative noise 𝑟 ∈ −1,+1 as:
𝑿! = 1 + 𝜇𝑟 𝑿

19EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

𝑟 ∈ −1,+1

T tendencies from a model level in 
mid-troposphere accumulated 
during t+0-3h (K/3h):

Top: Ensemble stdev with SPPT
perturbations with (a) clear-sky 
HRs (a) included & (b) excluded.

Bottom: From control forecast, 
from (a) convection & (b) radiation 
schemes

Figure 2 & Figure 1,from Lock et al. 
(2019, QJRMS)



SPPT random pattern 

• 2D random pattern in spectral space:

– First-order auto-regressive [AR(1)] process for evolving spectral coefficients �̂�

�̂� 𝑡 + ∆𝑡 = 𝜙�̂� 𝑡 + 𝜌𝜂 𝑡

where 𝜙 = exp ⁄−∆𝑡 𝜏  controls the correlation over timestep ∆𝑡;

and spatial correlations (Gaussian around the globe) for each wavenumber 

define 𝜌 for random numbers, 𝜂

• Resulting pattern mapped into grid-point space 𝑟:

– clipped such that 𝑟 ∈ −1, +1 --- prevents perturbation changing the sign of the tendency

– same pattern is applied to 𝑇, 𝑄, 𝑈, 𝑉 (excluding clear-sky heating rates from radiation)

– applied at all model levels to preserve vertical structures**

– **Except: tapered to zero at model bottom, to avoid:

• excessive spread in the boundary layer caused by applying perturbations to large wind 
tendencies.
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𝑟" ∈ −1,+1

𝜇 ∈ 0,1



• 2D random pattern, 𝑟:

– Time-correlations: AR(1) 

– Spatial-correlations: Gaussian shape around the globe

– Clipped such that 𝑟 ∈ −1,+1

• Applied at all model levels to preserve vertical structures**

**Except: tapered to zero at model bottom
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Example random pattern:

- Perturbed member, number 1
- Pattern at t = 24h
- Colours: blues = [-1,0), reds = (0,1]

SPPT random pattern 



• 2D random pattern, 𝑟:

– Time-correlations: AR(1) 

– Spatial-correlations: Gaussian shape around the globe

– Clipped such that 𝑟 ∈ −1,+1

• Applied at all model levels to preserve vertical structures**

**Except: tapered to zero at model bottom
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Example random pattern:

- Perturbed member, number 1
- Pattern at t = 0 .. 48h (dt = 15 min)
- Colours: blues = [-1,0), reds = (0,1]

SPPT random pattern 



• 2D random pattern, 𝑟:

– Time-correlations: AR(1) 

– Spatial-correlations: Gaussian shape around the globe

– Clipped such that 𝑟 ∈ −1,+1

• Applied at all model levels to preserve vertical structures**

**Except: tapered to zero at model bottom

• Multi-scale pattern:

- 3 time/space scales

- Shortest scales dominate

- 𝜎"#$%&'( = 0.4453
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SPPT random pattern 

sppt1 6 hours, 500 km, 𝜎 = 0.42

sppt2 3 days, 1 000 km, 𝜎 = 0.14

sppt3 30 days, 2 000 km, 𝜎 = 0.048



SPPT random pattern: multi-scale
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sppt1 6 hours, 500 km, 𝜎 = 0.42

sppt2 3 days, 1 000 km, 𝜎 = 0.14

sppt3 30 days, 2 000 km, 𝜎 = 0.048

Example random patterns:

- Perturbed member, number 1
- Patterns at t = 0 .. 48h (dt = 15 min)
- Colours: blues = [-1,0), reds = (0,1]



SPPT random pattern
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sppt1 6 hours, 500 km, 𝜎 = 0.42

sppt2 3 days, 1 000 km, 𝜎 = 0.14

sppt3 30 days, 2 000 km, 𝜎 = 0.048



Ensemble forecasts: with multi-scale model uncertainty perturbations (SPPT)

CY47R3

TCo399L137, dt=1200s 

30 dates (Dec 2019)

8 perturbed fcs

Ensemble mean RMSE (“Error”) & standard deviation (“Spread”)

IP only

IP + SPPT3* 
(*3 scales)

Windspeed (ms-1), 250hPa, 
Northern extra-tropics

Z (dam), 500hPa, 
Northern extra-tropics

T (K), 850hPa, 
Tropics

Windspeed (ms-1), 250hPa, 
Tropics

RMS ensemble variance
(“spread”)

RMSE ensemble mean
(“error”)



Ensemble forecasts: with multi-scale model uncertainty perturbations (SPPT)
Ensemble mean RMSE (“Error”) & standard deviation (“Spread”)

IP only

Windspeed (ms-1), 250hPa, 
Northern extra-tropics

Z (dam), 500hPa, 
Northern extra-tropics

T (K), 850hPa, 
Tropics

Windspeed (ms-1), 250hPa, 
Tropics

IP + SPPT3* 
(*3 scales)

CY47R3

TCo399L137, dt=1200s 

11 dates (Dec 2019/Jan 2020)

8 perturbed fcs

IP + SPPT1** 
(**shortest 
scale only)

Some additional 
spread from SPPT3
- 3rd scale deemed 
important for longer-
range forecasts



Ensemble forecasts: with multi-scale model uncertainty perturbations (SPPT)
Scorecard of probabilistic skill (“fCRPS”) & ensemble standard deviation (“Spread”)

CY47R3

TCo399L137, dt=1200s 

30 dates (Dec 2019)

8 perturbed fcs

verified 
against 
analysis

verified 
against 

observations

IP + SPPT3* 
(*3 scales)

IP onlyversus

Scorecard (summary):

Spread:
Purple = more spread / Green = less spread

fCRPS:
Blue = more skillful / Red less skillful

Framed cell indicates statistically significant 
differences at the 95% confidence interval



Ensemble forecasts: with multi-scale model uncertainty perturbations (SPPT)

CY47R3

TCo399L137, dt=1200s 

30 dates (Dec 2019)

8 perturbed fcs

verified 
against 
analysis

verified 
against 

observations

Scorecard of probabilistic skill (“fCRPS”) & ensemble standard deviation (“Spread”)



Summary: stochastic representation of model uncertainty in IFS

• Model uncertainty (MU) due to unresolved and misrepresented processes

• Without representing MU, ensemble forecasts are under-dispersive => over-confident

• Stochastic representations of model uncertainty can improve ensemble reliability

• SPPT: represents uncertainty due to sub-grid atmospheric physics parameterisations

Ø Medium-range: increased ensemble spread, greater probabilistic skill

Ø Seasonal: reduction in biases; better representation of MJO, ENSO, PNA regimes (Weisheimer et al., 2014, 

Phil. Trans. R. Soc. A)

• Difficult to characterise sources of model uncertainty due to their small scales
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Stochastic representations of model uncertainty: outlook for IFS

• Aim: to improve the physical consistency

• Local conservation of moisture, momentum, 
energy

• Generate flux perturbations at the top of 
atmosphere (TOA) and surface that are consistent 
with tendency perturbations within the atmospheric 
column

• Remove ad hoc tapering in boundary layer

• Include multi-variate aspects of uncertainties
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Towards process-level model uncertainty representation



Stochastic physics: outlook for IFS

Stochastically Perturbed Parametrisations (SPP)

(Lang et al., 2021, QJRMS; Ollinaho et al., 2017, QJRMS)

• Embed stochasticity inside IFS parametrisations

• Perturb parameters/variables directly

• Specify spatial/temporal correlations

• Target uncertainties that matter (level of 
uncertainty and impact)

• Require that stochastic schemes converge to 
deterministic schemes in limit of vanishing variance

32EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Towards process-level model uncertainty representation

Stochastically perturb parameters/variables in the physics parametrisations ( A𝜉& ):

𝜉& = A𝜉& exp 𝛹&

where 
𝛹&~𝒩 𝜇& , 𝜎&'



Revisions to SPP

• Work on a revision of SPP completed: Lang et al (2021), 
https://doi.org/10.1002/qj.3978

• Summary of changes
– probability distributions (mean and variance)
– correlation scale
– additional perturbed quantities (total 27):

• Cloud scheme
• Convection scheme
• BL scheme
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à

https://doi.org/10.1002/qj.3978


SPP-new versus SPP-ref scorecard showing fCRPS changes
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percent
im

provem
ent   |   degradation

verified 
against 
analysis

verified 
against 

observations

lead time (h) Coloured: 99.7% sig. level

From Lang et al. (2021)



Histogram of relative CRPS changes: SPPT, SPP 
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lead times 24 h ... 360 h
combination of variables and 
levels evaluated in scorecard
3 regions: N-Hem, S-Hem, 
tropics

vertical lines: median change

based on 8 members and fair 
CRPS, boreal summer + boreal 
winter, 212 start dates, TCo399

colour: stat. significance 99.7%,
grey otherwise

SPPT
SPP-new

rel. CRPS decrease wrt SPP-ref

rel. CRPS decrease wrt initial pertns. only

ß degradation | improvement à

ß degradation | improvement à Enters operations 

in CY49R1 (2024)!



Dynamics

Coupled 
processes

X

DX

Physics 
parametriza-
tions PX

CX

Future: representing other sources of uncertainty?

• Discretisation
• Time-integration
• Transport
• Stabilisation

• LW/SW Radiation
• Convection
• Clouds & microphysics
• Composition
• Boundary layer 
• Turbulent mixing
• Gravity wave drag

• Land-surface
• Ocean
• Sea-ice



STOCHDP: 
Stochastically perturbed semi-Lagrangian (SL) departure point (DP) estimates
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Diamantakis & Magnusson (2016): 
• Explored convergence rate of the iterative DP estimate
• Slowest convergence ßà most complex flow (strong shear / 

curvature)
• Example: Typhoon Neoguri:

• HRES forecast: initialised: 2014-07-05, 00UTC

Fig. 1c

Figure 3: difference in DP estimate between 
consecutive iterations (scaled)

D(2)
D(4)

A D(1)
D(3)

D(5)

Fig. 1c: t+96h, 850hPa windspeeds

Fig. 3



STOCHDP: 
Stochastically perturbed semi-Lagrangian (SL) departure point (DP) estimates
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D(2)
D(4)

A D(1)
D(3)

D(5)D*
Model uncertainty scheme, “STOCHDP”: 
• use the DP estimate convergence rate to attribute MU:

where D* is the perturbed DP and r is a random number

Ø STOCHDP represents MU from SL advective winds

𝐷∗ = 𝐷 $ + 𝑟 𝐷 $ −𝐷 $%& , 𝑖 = 1. . 4

Early results, e.g.:
• Typhoon Neoguri case
• ENS: STOCHDP only
• TCo639L91, dt=720s
• 20+1 members
• Peak ENS stdev develops 

and tracks with TC 

t+96h

Control forecast Ensemble stdevWindspeed (850hPa)



Summary

• Including a representation of model uncertainty can improve the reliability of ensemble forecasts

• ”Model uncertainty” describes inaccuracies due to the model integrations

• Using stochastic physics schemes enables representation of the model uncertainty arising from the 

parametrization of unresolved atmospheric physics

• Current stochastic physics scheme used in the IFS: SPPT

• Outlook: new scheme ”SPP” improves the physical consistency of the stochastic physics perturbations

• Ongoing: exploring stochastic perturbations to represent model uncertainty in the dynamics – STOCHDP
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Further reading & upcoming workshop
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In 2016, we undertook an extensive review of existing and future efforts in model uncertainty 
representation – as a Special Topic paper for our Scientific Advisory Committee

Report covers:

– Literature review of model uncertainty work

– Descriptions/discussions of SPPT / SKEB / SPP schemes

– Impacts of the schemes in the IFS (EDA; short / medium / extended / longer forecast ranges)

– Proposals for future directions – improvements to SPPT; extensions to SPP; new approaches

Leutbecher, M., Lock, S.-J., Ollinaho, P., Lang, S.T.K., et al. (2017), Stochastic representations of 
model uncertainties at ECMWF: state of the art and future vision. Q.J.R. Meteorol. Soc, 143: 2315-
2339. https://doi.org/10.1002/qj.3094

https://doi.org/10.1002/qj.3094

