Wind information from Aeolus

EUMETSAT/ECMWF NWP-SAF Satellite Data Assimilation training course, 2024

by Michael Rennie* (m.rennie@ecmwf.int) Thanks for material from colleagues at ECMWF, ESA and **Aeolus DISC** (particularly DLR)

*Actively sensed Observations Team, Farth System Assimilation Section

esa

© ECMWF March 7, 2024

aeolus

DISC

Aeolus satellite mission

- European Space Agency "Earth Explorer" mission to measure profiles of wind globally
 - Chosen in 1999
 - Named from Greek mythology: "Keeper of the Winds"

- Payload: Doppler wind lidar (DWL); ALADIN: Atmospheric LAser Doppler INstrument
- Technology demonstration; 3-years
- Satellite and instrument built by Airbus Defence and Space
- Status of mission:
 - Launched on 22 August 2018 (10 yr delay due to technical issues!)
 - First wind lidar in space and first European lidar in space
 - Measured winds from 3 September 2018 until 5 July 2023. Exceeded nominal mission lifetime; deorbited on 28 July 2023 (lack of fuel!)

ESA-developed Earth Observation missions

Aeolus satellite mission

Scientific Objectives:

- Improve the quality of weather forecasts by providing global profile measurements of horizontal line-of-sight wind in troposphere and lower stratosphere
- 2. To advance understanding of atmospheric dynamics and climate processes

Long-term goal:

Demonstrate space-based Doppler wind lidar's capability for operational use

- Global Observing System still lacks globally distributed wind profiles
- Best NWP impact was expected in tropics due to lack of conventional wind profiles and atmospheric dynamical arguments on importance of wind versus mass (T, p) information near equator

WEATHER FOREC Weather Forect Weather Forect Weather Forect Weather Forect Weather Forect Wind field dominates the atmospheric dynamics, and three-dimensional wind measurements are important. Courtesy: ESA, 1999

Aeolus measurement principle

Cover<u>age in a day</u>

- Satellite: sun-synchronous, dawn-dusk (06/18 Local Solar Time) near polar orbit; 111 orbits per week
 - At terminator between day/night to keep solar panels illuminated and minimise reflected solar radiation (noise)
- Instrument:
 - Direct detection Doppler wind lidar at ~355 nm (long wave ultraviolet), fires ~50 laser pulses per second
 - Two receiver channels:
 - Mie to determine winds from cloud and aerosol backscatter ("cloudy"-air)
 - **Rayleigh** to determine winds from **molecular** backscatter (clear-air)
 - Lidar line-of-sight points:
 - 35° off-nadir to determine horizontal line-of-sight wind component (not vector wind)
 - Perpendicular to satellite-earth relative velocity
 - To dark side to minimise reflected solar radiation

Introduction to lidar, Doppler wind lidar and Aeolus' specific design

Lidar equation

• Total scattered **power received by lidar** at a time corresponding to range *R* is:

$$P(\lambda, R) = P_L \frac{A_0}{R^2} \xi(\lambda, R) \beta(\lambda, R) T^2(\lambda, R) \frac{c\tau_L}{2}$$

- λ = laser wavelength
- R = range of scatterer from sensor
- β = **atmosphere** volume backscattering coefficient
- *T* = one way transmission factor (Beer-Lambert law): $T(\lambda, R) = e^{-\int_0^R \alpha(\lambda, R) dR}$
- *α* = **atmosphere** attenuation coefficient
- P_L = average power in laser pulse
- A_0 = area of objective lens
- *c* = speed of light
- τ_L = laser pulse duration
- ξ = calibration factor (depending on spectral transmission of receiver and overlap factor)

Source: Measures (1992); R.M. Measures, "Laser Remote Sensing. Fundamentals and Applications". John Wiley & Sons, 1984

9

"Lidar curtain" of space-borne lidar (CALIPSO (532 nm)), attenuated backscatter: βT^2

532 nm Total Attenuated Backscatter, km⁻¹ sr⁻¹ UTC: 2016-04-13 02:37:53.8 to 2016-04-13 02:51:22.5 Version: 3.30 Standard Nighttime

What's different about a Doppler lidar?

• Atmospheric composition lidars use **amplitude of backscatter signal** and **polarisation** to provide information about the **atmospheric composition**

- **Doppler lidars** measure **change in the frequency** (Doppler shift) of received relative to emitted light **to determine line-of-sight wind**
 - Aeolus also provides an atmospheric composition product; a useful demonstration of spacebased high-spectral resolution (HSRL) UV lidar; ESA's EarthCARE ATLID lidar will specialise in this

Doppler wind lidar

A DWL measures the Doppler frequency shift of backscattered light

Blue shift

4

- Doppler frequency shift: $\Delta f = 2f_0 v_{LOS}/c$
 - Δf = change in frequency
 - f_0 = emitted frequency e.g. ~845 THz for Aeolus
 - c = speed of light
 - v_{LOS} = component of atmosphere's wind velocity along line-of-sight direction. Average speed of molecules/particles in volume of air.
- Doppler shift frequency is very small, $\frac{\Delta f}{f_0} \approx 10^{-8}$ for 1 m/s LOS wind change; need **very sensitive instrument**
- Backscatter comes from:
 - Air molecules (clear air), particles (aerosol/cloud) and Earth's surface

Aeolus operates lidar at 355 nm wavelength – scattering behaviour

13

Winds from **clear sky** conditions; **Rayleigh** scattering

- For Rayleigh scattering: $I \propto \frac{1}{\lambda^4}$; scatterer size $<\frac{\lambda}{10}$
 - · For strong scattering from air molecules need short wavelength, hence Aeolus uses UV laser
- **Thermal motion** of molecules leads to **Doppler** broadening
 - e.g. T=15 °C get σ_v =459 m/s!
 - Brillouin scattering effect due to acoustic waves (at higher pressure) also matters
- Wind measured as frequency shift in mean of broadened spectrum (1 m/s HLOS wind=3 MHz Δf) from wind

EUROPEAN CENTRE FOR MEDIUM-RANGE

0

-5

Winds from "**cloudy**" conditions i.e. scattering from cloud water/ice droplets and aerosols; **Mie** scattering

- Particle sizes $\geq \lambda$; intensity weakly dependent on λ
- Doppler broadening negligible (particles "heavy")
 - Narrow spectrum
 - No temperature, pressure dependence
- <u>Wind</u> measured as frequency shift in mean of narrow Mie spectrum
- Since light is strongly attenuated by most clouds, then measure winds mostly from the top of clouds (from space)

- 5

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Doppler shift from wind

0

 Δf (GHz)

15

Rayleigh channel method

Doube-edge Fabry-Pérot interferometer

transmission maximum
 occurs for a specific
 wavelength of light; which
 differs for each interferometer

- Rayleigh spots imaged on accumulation CCD
- Contrast of spots $R = \frac{A-B}{A+B}$ calibrated against frequency

From Reitebuch (2012): Wind Lidar for Atmospheric Research, in Springer Series

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Mie channel method

Figure from Reitebuch (2012): Wind Lidar for Atmospheric Research, in Springer Series

Mie fringe on ACCD

σu

Fringe position $\propto f$, calibration required

- Narrowband Fizeau
 interferometer
- Transmission max. for *f* depends on x-position – thickness of gap (*wedge* shape)

Figure from Reitebuch (2012) The Spaceborne Wind Lidar Mission ADM-Aeolus, Springer

 d_2

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

9

Real Mie channel signals (L1B data) over an orbit

Features of Doppler Wind Lidar

- Advantages:
 - Provides Doppler shift (hence LOS wind speed) profiles
 - Good vertical and horizontal (along-track) resolution is possible
 - Complementary to relatively poor *vertical* resolution of passive sensing instruments
 - Not many processing steps and assumptions to get wind i.e. reasonably direct measure of the geophysical variable
- Disadvantages:
 - Totally attenuated by optically thick cloud or aerosol, need radar to see within clouds
 - Space-borne DWL:
 - Complicated technology
 - Several LOS "looks" are required to get <u>vector</u> wind, nominally have wind component along the LOS
 - · Limited sampling across-track i.e. "poor swath"
 - Due to 1/R² dependence of signal, then relatively *low altitude orbit* (closer to target) hence fuel issues
 - Calibration can be tricky

Example of Aeolus Level-2B horizontal line-of-sight (HLOS) winds

12-hours of L2B **Mie-cloudy** HLOS winds

22

Rayleigh and Mie winds are complementary

24 24 20 20 Altitude, wrt geoid (km) 16 16 12 12 8 -63.8 -89.9 -17.2 -72.2 -40.8 -78.2 77.2 -41.3 -40.8 -78.2 -63.8 -89.9 Lat: Lon: 77.5 98.9 77.2 -41.3 54.1 -57.7 30.4 -63.4 6.6 -67.8 -81.1 -155.7 -65.8 126.4 -42.9 113.5 -19.4 107.3 4.4 102.8 28.2 98.5 51.9 93.0 75. Lat: 78. Lon: 77.5 98.9 54.1 -57.7 30.4 -63.4 6.6 -67.8 -17.2 -72.2 -81.1 -155.7 -65.8 126.4 -42.9 113.5 -19.4 107.3 4.4 102.8 51.9 93.0 28.2 98.5 75.1 78.9 HLOS wind O (m/s) HLOS wind O (m/s) Mean=-0.21 Mean=-0.07 Std.dev.=15.30 Count=344(Std.dev.=19.70 Count=8986 -47.61 -22.26 3.10 28.46 53.81 -72.97 -47.61 -22.26 3.10 28.46 -72.97 79.17 53.81 79.17 ~14 km horizontal averages ~86 km horizontal averages

Mie-cloudy L2B HLOS winds

Allitude, wit geold (Kiti)

Rayleigh-clear L2B HLOS winds

Use of Aeolus in NWP at ECMWF

What to assimilate from Aeolus for NWP?

L2B HLOS (horizontal line-of-sight) wind assimilation

- Assigned observation error (R matrix) uses L2B processor estimated instrument noise
- Aeolus was operationally used at ECMWF from 9 Jan 2020 to 30 April 2023

Aeolus signal levels during mission – signal dropped at steady rate for FM-A laser (first time) and FM-B. But last attempt with FM-A proved to be quite stable.

Global HLOS wind **O-B** departure statistics for L2B **Rayleigh-clear**, **15 July 2019 (at its best)!**

- Global average bias is reasonable
- *Estimated* observation error from O-B departures

$$\sqrt{st.dev.(O-B)^2-{\sigma_B}^2}$$

- Profile average ~ 4 m/s
- Still larger than we hoped for before launch
- Compare: radiosonde u-wind assigned obs. error is ~2 m/s

Global HLOS O-B statistics for L2B Mie-cloudy, 15 July 2019

- Global average bias is reasonable and stable with time
- *Estimated* observation random error from O-B departures

$$\sqrt{st.\,dev(O-B))^2-{\sigma_B}^2}$$
 is

- Profile average ~3 m/s
- Mie averaging length scale is ~10-20 km (Rayleigh is ≤ ~86 km)
- Mie noise better despite finer horizontal resolution than Rayleigh

Aeolus Level-2B HLOS (horizontal line-of-sight) wind data quality

Rayleigh-clear

- Large variability of random errors (variable signal levels)
- Recent NRT FM-A laser good (best processing, reduced readout noise, reasonable signal)

Mie-cloudy

- Noise quite stable and small compared to Rayleigh-clear
- But data count variable with signal levels/aerosol load

Aeolus NWP impact at ECMWF

Methods for Aeolus L2B wind NWP impact assessment at ECMWF

- Observing System Experiments (OSEs):
 - For robust assessment of impact into the medium-range
 - 2nd reprocessed FM-B period (**OSE for long period**):
 - Rayleigh-clear + Mie-cloudy as in current operations; **29 June 2019 to 9 October 2020**
- Forecast Sensitivity Observation Impact (FSOI):
 - Assessment of short-range forecast impact with some limitations
 - Operational FSOI; since 9 January 2020
 - FSOI via 2nd reprocessed dataset OSE (Aeolus "on" experiment)

Assimilating Aeolus winds has strong effect on zonal wind analyses

Mean difference in *u* analysis at **100 hPa** -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 02 03 04 05 06 07 08 0.1 m/s 120°E 120°W 60°W 0°E 60°N 60°N 30°N 0°N 30°S 60°S 60°S 120°W 60°W 60° 120°E

Largest changes made to tropical upper troposphere and SH extratropics – in climatological **convergence zones**; larger background wind errors associated with convection

Independent wind observations confirm improvements from assimilating Aeolus

Fit to vector wind from aircraft, radiosondes and radar wind profilers

Positive impact in mid-troposphere to lower stratosphere Largest impact on **wind in upper troposphere and lower stratosphere in tropics**

36

Improved winds lead to better NWP temperature and humidity forecasts

Aeolus significantly improves NWP forecasts in most areas and forecast ranges

Short-range forecast impact by Forecast Sensitivity to Observation (FSO) time-series Aeolus absolute FSOI, global 20000 Aeolus Rayleigh-clear summed FSOI, 14 day rolling average Impact depends ٠ Aeolus Mie-cloudy summed FSOI, 14 day rolling average 18000 on random error Total Aeolus summed FSOI, 14 day rolling average and data counts 16000 (some gaps, 14000 QC) FSOI (10⁻⁵Jkg⁻¹) 12000 Impact was boosted by 10000 increased signal 8000 levels of FM-A in final 5 months 6000 4000 FM-B laser FM-A 2000 2019-09-01 2019-07-01 2019-11-01 2020-01-01 2020-03-01 2020-05-01 2020-07-01 2022-03-01 2022-09-01 2022-11-01 2023-01-01 2023-03-01 2020-09-01 2020-11-01 2021-01-01 2021-03-01 2021-05-01 2021-11-01 2022-01-01 2022-05-01 2022-07-01 2021-07-01 2021-09-01 Date (YYYY-MM-DD) Impact with FM-A laser in late 2022 into 2023 increased by 39 ~60% compared to **end** of FM-B – thanks to better signal

Aeolus punched above its weight given the amount of data

An impression of analysis u-component wind **random errors**: stdev of **ECMWF minus Met Office** analysis differences: 1 Jan to 20 Feb 2023

An impression of analysis u-component wind **systematic errors**: mean of **ECMWF minus Met Office** analysis differences: 1 Jan to 20 Feb 2023

Some other demonstrated benefits in atmospheric sciences from Aeolus

- Applications in *atmospheric dynamics* research:
 - gravity waves, equatorial waves, SSW events, QBO monitoring improving understanding of Earth's climate

e.g. https://doi.org/10.5194/acp-24-2465-2024

- Optical properties for *atmospheric composition* research:
 - Wildfire smoke, Saharan dust, volcanic eruption plumes, atmospheric composition data assimilation
 - Unique ability of Aeolus to measure dynamics and optical properties should be exploited further – coupled composition and dynamics forecasts
 - Cloud properties. Mark Fielding (ECMWF) has been testing assimilating cloud information from Aeolus
- Aeolus winds are useful for verifying/improving usage of other satellite wind observation types e.g. Atmospheric Motion Vectors and checking if other observation types are improving wind

Summary on Wind Information from Aeolus

- Novel space-based technology is required to actively sense wind profiles – Aeolus Doppler Wind Lidar demonstrated this
- Measured signals have a reasonably direct link to wind geophysical variable
- Positive NWP impact corroborates dynamical reasoning on importance of global, vertically resolved wind profiles
- Applications in atmospheric clouds, dynamics and composition research

In upcoming years:

- Focus on achieving best quality reprocessed datasets for research and reanalysis (ERA6) and maximising impact
- Operational follow-on mission (EPS-Aeolus) with two satellites (one after other) in 2031 time-frame is being prepared by ESA/EUMETSAT – decision on "programme" by EUMETSAT member states in 2025
 - Many improvements planned relative to Aeolus so increased impact

Thanks for listening. Any questions?

Backup slides

Aeolus' orbital parameters

Aeolus track in July

Aeolus track in October

- Dawn-dusk sun synchronous (18:00 ascending node)
- 7 day repeat cycle (111 orbits)
- Inclination: ~97 degrees
- Altitude: ~320 km
- The laser points towards the dark side of the terminator to reduce UV solar background noise – but this can't be avoided over the poles in summer

Types of Doppler wind lidar

- Coherent detection
 - Detecting beat signal mixing of returned signal with internal reference
 - Particulate (Mie) scattering only
- Direct detection:
 - Aeolus uses this
 - Measurement is signal intensity (or photon counts) through optical filters (interferometers) which varies with the frequency of light
 - <u>Molecules and particles</u> are the source of the backscattered signal
 - Useful for NWP to have both clear air + cloud/aerosol winds

Aeolus Rayleigh channel

Uses "filter method", specifically the double-edge technique

- Two frequency filters (A and B) sample sides of Rayleigh-Brillouin spectrum, providing photon counts
- Contrast function (response) calculated from counts: $R = \frac{A-B}{A+B}$
- R is measured for both internal reference (i.e. outgoing laser spectrum) and for atmospheric return
- Calibration is needed for both internal and atmospheric responses to relate response to frequency
- Change in frequency of atmospheric relative to internal frequency is obtained $\Delta f = f_{atm} f_{int}$ i.e. the Doppler shift, hence LOS wind

Aeolus Mie channel

Wind derived from the narrow Mie spectrum obtained by "Fringe Imaging Technique"

- Position of interference pattern (called a "fringe") is related to frequency (by calibration), both for the internal and atmospheric returns
- Measured fringe centroid for both internal and atmospheric signals is then converted to frequency, hence calculate $\Delta f = f_{atm} f_{int}$ i.e. the Doppler shift, hence LOS wind

How Aeolus products were produced in NRT

Wind products were produced in NRT for the benefit of operational NWP – *despite being only a demonstration mission*

There are 24 vertical range-bins to assign

- Range-bin thickness can vary from 0.25 to 2 km thick in 0.25 km increments
- Rayleigh and Mie range-bin settings can be different

- Range-bins settings can vary according to latitude/longitude boxes that are defined on-board the satellite
 - An attempt has been made to optimise the settings for NWP impact - varying with latitude

Example of Level-1B signal amplitude (photon counts, i.e. *not winds*) for a 3000 km stretch of data

Each data point is ~2.7 km across (a flexible instrument setting)

Rayleigh channel signal

Mie channel signal

Real Aeolus measurement signal amplitudes

55

Level-2B wind processing algorithm overview

- Line-of-sight (LOS) or Horizontal LOS wind components suitable for use in NWP/research
 - Using measurement-level L1B data and calibration products
- Enhancements compared to L1B observations:
 - Grouping of measurements: control of horizontal resolution and noise
 - Classification of measurements: into different types using optical properties (clear/cloudy); to avoid significant Mie contamination of Rayleigh
 - Accumulation: of L1B signal of grouped and classified measurements
 - Wind retrieval for different observation types:
 - Rayleigh-clear; Mie-cloudy; Rayleigh-cloudy; Mie-clear
 - Rayleigh corrections:
 - **Temperature**, **pressure** sensitivity (**R**ayleigh-**B**rillouin **C**orrection) using *a priori* (AUX_MET) information
 - without this correction several m/s HLOS wind biases could occur
 - Account for Mie signal on Rayleigh channel using L1B scattering ratio

... continued

- Uncertainty estimates (dynamic instrument error estimate) and quality flags for each wind result
- Wind observations are essentially independent however profile also provided pointing to observation index
- Most processing options controllable via settings file (flexible)
- Software freely available and highly portable: <u>https://confluence.ecmwf.int/display/AEOL</u>
- Additional tools in software package:
 - L2B EE to BUFR converter for NWP users
 - Various tools to write products to ASCII

• Aeolus L2B data can be browsed in the ADDF archive (<u>https://aeolus-ds.eo.esa.in</u>t) and browsed and plotted by the VirES tool (<u>https://aeolus.services/</u>)

A very windy day in north-west Europe (10 March 2019)

Photo from near Reading: apart from low level clouds, sky was clear

What Aeolus observed (Rayleigh + Mie winds) near the low

A breakthrough in 2019: explanation for dominant source of Rayleigh wind bias which varies on less than one orbit time-scales was found

- Investigations showed Rayleigh **wind bias**, which varies along the orbit, is strongly correlated with telescope **primary mirror temperatures variations**
- Temperatures vary due to varying Earthshine and the mirror's thermal control
 - Temperature variations correlate with outgoing SW and LW radiation
- *Probable mechanism:* thermal variations alter primary mirror shape, causing angular changes of light onto spectrometer, causing apparent frequency changes
- **Bias correction** using measured telescope primary mirror temperatures was demonstrated to work in offline testing and is being implemented in next processor versions:
 - See references for more details:
 - <u>https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/gj.4142</u>
 - https://amt.copernicus.org/articles/14/7167/2021/amt-14-7167-2021-discussion.html

Aeolus L2B wind usage in global NWP

- Positive NWP impact was demonstrated
 - Operationally assimilated at ECMWF from 9 January 2020 to 30 April 2023
- Other NWP centres found positive impact; operationally assimilated at: DWD, Météo-France, Met Office and NCMRWF
- Being a demonstration mission, still finding ways to improve ground processing algorithms (L1B, L2B, calibration processors) and its usage:
 - Data quality was not as good as hoped for i.e. significantly noisier winds, larger biases than expected
 - Lower signal levels -> larger noise
 - Unexpected sources of **wind bias** e.g. primary mirror temperature-gradient sensitivity (0.3K range of gradient across mirror¹⁰⁰ Acous Rayleigh-clear bias correction for period: 20190802_2019087

Rayleigh has large biases which vary with geolocation

Regression of <O-B> versus M1 temperature function Best results on 8/8/19 obtained with:

Outer temp. average: AHT-27, TC-20, TC-21 Inner temp. average: AHT-24, AHT-25, AHT-26, TC-18, TC-19

Bias correction to the ECMWF model

- Implemented bias correction scheme: <O-B> vs. "orbit's argument of latitude" and longitude
- Updates to bias correction look-up table done typically done every few days in experiments
- Mie biases very stable and do not require the longitude dimension

Example of how **Rayleigh**

ECMWF operational relative FSOI (1 Jan to 30 April 2023)

Aeolus does well for one instrument compared to existing multi-instrument satellite systems

Summary of Aeolus NWP impact at ECMWF

- Aeolus provides a **strong impact** for one satellite instrument
 - Positive impact in most areas and ranges for wind, temperature and humidity
 - Largest impact in tropical and polar UTLS; into medium range
- Shows importance of additional wind observations in NWP wind is still not a well-observed variable

Relative FSOI with <u>2nd reprocessed dataset</u>; 3-29 July 2019 (when Aeolus had its smallest random errors)

- Aeolus has good impact for one satellite
 instrument
 - When have reasonable Rayleigh-clear random errors

