Microwave observations (part 2): cloud and precipitation; applications

Alan Geer

EUMETSAT/ECMWF NWP-SAF satellite data assimilation training course, 11 – 15 March 2024

© ECMWF March 14, 2024

Scattering radiative transfer

© ECMWF March 14, 2024

Radiative transfer: window channels (ignoring scattering)

Schwarzchild's equation

Adding scattering

Change in coordinates: optical depth

Change in optical depth $d\tau$ in a non-scattering atmosphere

Change in optical depth $d\tau$ including extinction by scattering

$$d\tau = -\beta_a ds$$

$$d\tau = -(\beta_a + \beta_s)ds = -\beta_e ds$$

The full scattering radiative transfer equation

- Without scattering, just integrate this equation along the path travelled by the radiation
- With scattering, this can be complex to solve:
 I(Ω), the radiance in one direction, depends on radiance from all other directions: I(Ω')
 and all levels depend on each other

Radiative transfer: window channels (ignoring scattering)

Radiative transfer: window channels (with scattering)

Strong scattering at 91 GHz

Reverse Monte-Carlo radiative transfer solver

The full scattering radiative transfer equation

Cloud effects in observations

© ECMWF March 14, 2024

Observed TB [K]

Effect of hydrometeors in microwave sounding channels

Observed TB [K]

Effect of hydrometeors in microwave sounding channels

increases TB)

Cloud and rain (absorption, pushes up weighting function altitude, decreases TB)

Cloud and snow/ice/graupel (absorption and scattering, decreases TB)

16

0

-5

-10

-15

-20

The full scattering radiative transfer equation

Gas absorption: the microwave spectrum

Geer et al. (2021, GMD, Bulk hydrometeor optical properties for microwave and sub-millimetre radiative transfer in RTTOV-SCATT v13.0)

Absorption in pure water or ice

Effect of hydrometeors – particles

• 30 GHz frequency \leftrightarrow 10mm wavelength (λ)

x << 1: Rayleigh scattering

x ~ 1: Mie sphere, discrete dipole approximation, etc.

x >> 1: Geometric optics

Particle type	Size range, r	Size parameter, x
Cloud droplets	5 – 50 µm	0.003 - 0.03
Drizzle	~100 µm	0.06
Rain drop	0.1 – 3 mm	0.06 - 1.8
Ice crystals	10 – 100 µm	0.006 - 0.06
Snow	1 – 10 mm	0.6 - 6
Hailstone	~10 mm	6

- Effect of particles on radiation is a function of the particle shape and structure, size relative to the radiation, and composition (complex refractive index / permittivity)
- Bulk effect of particles is an integral over the particle size distribution (PSD)

Optical properties of hydrometeors in RTTOV-SCATT: at 183 GHz

Lookup tables for snow hydrometeors as a function of snow water content

Bulk extinction coefficient scaled relative to a large plate aggregate

Optical properties of hydrometeors in RTTOV-SCATT: across frequencies

Lookup tables for hydrometeors at water content 10^-4 kg/m^3 as a function of frequency

(d)

Hydrometeor	Scattering	Particle shape	PSD				
placeholder	type			MGD parameters			
				N ₀	μ	Λ	γ
Rain	Mie	sphere	MGD	8×10 ⁶	0	free	1
Snow	ARTS	large plate aggregate	F07 T	_	_	_	_
Graupel	ARTS	column	F07 T	_	_	_	_
Cloud water	Mie	sphere	MGD	free	2	2.13×10^{5}	1
Cloud ice	ARTS	large column aggregate	MGD	free	0	1×10^4	1

Geer et al. (2021, GMD)

Applications

(depending on time available)

© ECMWF March 14, 2024

Rough timeline of satellite microwave data assimilation in 'atmospheric' DA

r				
	Assimilate retrievals	Assimilate radiances	5	
Temperature				
Humidity				
Surface windspe Cloud and precipitation	ed			
Skin temperatur Soil moisture, si	e now			
vegetation	direct assin (late	t radiance nilation 1990s)	all-sky radiand assimilation (~2010)	ce all-sky all-surface radiance assimilation (2025)
	C ECMW	EUROPEAN CENTRE	FOR MEDIUM-RANGE WEATHER FORECASTS	25

All-sky assimilation

© ECMWF March 14, 2024

Clear-sky assimilation:

Clear-sky or all-sky?

- Remove any cloud-contaminated observations
- Do not model the effect of cloud on brightness temperatures
- Traditionally used for all satellite radiances, with particular benefit in temperature sounding
- Extract small signals of temperature forecast errors (order 0.1K) that would be swamped by errors from displaced clouds and precipitation (10-100K)
- All-sky assimilation
 - Model the effect of cloud and precipitation on the observations
 - Assimilate all data, whether clear, cloudy or precipitating
 - Initially developed for water-vapour sounding and imaging channels, but now also applied to temperature-sounding channels
 - Use the tracing mechanism of 4D-Var to infer the dynamical state from errors in the location/intensity of water vapour, cloud and precipitation
- Broadly, the clear-sky approach is now outdated at microwave frequencies
 - At ECMWF, all but a handful of microwave sensors are now assimilated in all-sky conditions
 - Broadly, going to all-sky assimilation doubles the impact of a sensor (ECMWF TM 741, 2014)

1-Feb-2024 to 29-Feb-2024

Impact (FSOI) of satellite radiances at ECMWF on short-range forecast, by sensor (100% = all obs)

All-sky microwave imagers: a unique contribution from precipitationaffected observations

Microwave imagers give their largest forecast impact from a small fraction of precipitating scenes.

Parameter estimation for 6 macro- and microphysical variables

Geer (2021, AMT): Physical characteristics of frozen hydrometeors inferred using parameter estimation

7. Rain gauge

8. Ground radar

All-sky all-surface assimilation

© ECMWF March 14, 2024

Information content: window (i.e. surface sensitive) channels

Developments for surface-sensitive microwave channels in cycle 48r1 (June 2023)

adding higher latitudes, land surfaces, mixed scenes (land – water) (but excluding sea-ice, snow, high altitudes, desert soils)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Empirical sea ice emissivity model used to retrieve sea ice concentration in atmospheric 4D-Var and to allow radiance assimilation over sea ice: activation in cycle 49r1 (autumn 2024)

IFS sea ice concentration at AMSR2 locations

12Z 2-Dec-2020

AMSR2 sink variable sea ice concentration

12Z 2-Dec-2020

AMSR2 sea ice fraction vs OLCI image: A68A iceberg

1 pixel ~

40x40 km

AMSR2

12Z 4th Dec 2020

OLCI channel 10 (681 nm)

Number of AMSR2 observations added

Up to around 7 observations per day per 10,000 km² have been added over sea ice regions

Forecast impact - temperature (blue = reduced error; +++ = statistical significance)

Improved temperature forecasts out to 72 hours in the Southern Ocean

Rough timeline of satellite microwave data assimilation in 'atmospheric' DA

	Assimilate retrievals	Assimilate radiances		
Temperature				
Humidity				
Surface windspe	ed			
Cloud and precipitation				
Sea ice				
Skin temperature Soil moisture, sn Vegetation	e OW			
-	direct assimi (late 1	radiance ilation 990s)	all-sky radiance assimilation (~2010)	all-sky all-surface radiance assimilation (2025)

Next step – coupling with land and ocean models in data assimilation

- Cycle 50r1: sea surface temperature estimation from microwave imagers (AMSR2, GMI) and coupling to ocean model (work led by Tracy Scanlon)
- Cycle 50r1: our microwave sea ice concentration assimilated in ocean model?
- After that?
 - Snow on land, soil moisture, vegetation, salinity...

Questions?

