| TRAINING
COURSE

The assimilation of satellite radiance
observations

Tony McNally
CECMWF @& NWP SAF



Overview:

 Why do we need satellites ?

 What do we have and which are most important ?
 What Is actually measured ?

 Key elements of satellite data assimilation

<~ ECMWF



Why do we need satellites ?

To forecast many days in to the future we need a global picture
of the current atmospheric state...
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Wednesday 30 August 2017 12 UTC ecmf t+0 VT:Wednesday 30 August 2017 12 UTC surface Cloudy brightness temperature
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Can we guantify how important
are satellites for NWP ?

...denial experiments...



Can we quantify how important are
satellites for NWP ?
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Can we quantify how important are
satellites are for NWP ?
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Satellites used for NWP at ECMWF

OB TYPE Satellite / sensors EUROPE ASIA

Atmospheric
Motion Vectors

Atmospheric
Sounding Radiances

GNSS-RO

SCAT /ALT

Doppler Wind
Lidar

METOP A,B,C,DUAL (AVHRR)
METEOSAT 8,11 (SEVIRI)
HIMAWARI 8 (AHI)

NPP, NOAA 20 (VIIRS)

NOAA 15,18,19 (AVHRR)
GOES 15,16 (I/ABI)

AQUA (MODIS)

METOP A,B,C (AMSU/MHS/IASI)
NPP, NOAA 20 (ATMS/CrIS)
NOAA 15,18,19 (AMSU/MHS)
AQUA (AMSUA/AIRS)
FY3-B,C,D (MWHS/MWHS2)
METEOSAT 9,11 (SEVIRI)
HIMAWARI 8 (AHI)

GOES 15,16, 17,18 (I/ABI)
GCOM-W (AMSR-2)

GPM (GMI)

DMSP 17,18 (SSM/IS)

METOP B,C (GRAS)
COSMIC2 Spire (2020)
TERRASAR / TANDEM
FY3 (GNOS)
KOMPSAT5 (GNOS)

METOP B,C(ASCAT) / JASON3 / AltiKA /

S3A/B / Cry2

Aeolus

METOP A,B,C + DUAL (AVHRR)

METEOSAT 8,11 (SEVIRI)

METOP B,C (AMSU/MHS/IASI)

METEOSAT 8,11 (SEVIRI)

METOP A,B,C (GRAS)
TERRASAR / TANDEM

SPIRE (commercial)

METOP A,B,C (ASCAT) /JJASON3/ JASON3/

AltiKA / S3A/B / CRY2

Aeolus

NPP, NOAA 20 (VIIRS)
NOAA 15,18,19 (AVHRR)
AQUA (MODIS)

GOES 15,16, 17, 18 (ABI)

NPP, NOAA 20 (ATMS/CrIS)
NOAA 15,18,19 (AMSU/MHS)
AQUA (AMSUA/AIRS)

GOES 15,16, 17, 18 (I/ABI)

DMSP 17,18 (SSM/IS)

COSMIC2

HIMAWARI 8, 9 (AHI)

FY3-C,D,E
(MWHS/MWHS2/MWRI)

HIMAWARI 8, 9 (AHI)

GCOM-W (AMSR-2)

FY3 (GNOS)
KOMPSAT5

Plus many others used for COPERNICUS Atmospheric composition and climate services



Split by sensor technology...

Atmospheric
Motion Vectors

Atmospheric Sounding
Radiances

GNSS-RO

SCAT /ALT

Doppler Wind
Lidar

METOP A,B,C,DUAL (AVHRR)
METEOSAT 8,11 (SEVIRI)
HIMAWARI 8 (AHI)

NPP, NOAA 20 (VIIRS)

NOAA 15,18,19 (AVHRR)
GOES 15,16 (I/ABI)

AQUA (MODIS)

METOP A,B,C (AMSU/MHS/IASI)
NPP, NOAA 20 (ATMS/Cr|S)
NOAA 15,18,19 (AMSU/MHS)
AQUA (AMSUA/AIRS)
FY3-B,C,D (MWHS/MWHS?2)
METEOSAT 8,11 (SEVIRI)
HIMAWARI 8 (AHI)

GOES 15,16 (I/ABI)
GCOM-W (AMSR-2)

GPM (GMI)

DMSP 17,18 (SSM/IS)

METOP A,B,C (GRAS)
COSMIC2 Spire (2020)
TERRASAR / TANDEM
FY3 (GNOS)
KOMPSATS5 (GNOS)

Aeolus

Sensor technology

Processing route

Passive microwave

L1 Radiances

Passive infrared

L1 Radiances / AMV

Radio occultation

Bending angles

L2 wind / SLA/ SWH

Doppler wind lidar

L2 LOS wind




Passive microwave (LEO)

ECMWF data coverage (used observations) - AMSUA ECMWF data coverage (used observations) - ATMS
2021021703 to 2021021709 2021021703 to 2021021709
Total number of obs = 64537 Total number of obs = 34255
® NOAAYS (8931) © NOAA-IB (10012} A NOAAS (V2896) ¥ METOP-A (13864
® NPP (15024 & NOAAZO (15900}
© NETOP-8 (Y 3TT) U METORC (TS

-~
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ECMWF data coverage (used observations) - MICROWAVE HUMIDITY IMAGERS ECMWEF data coverage (used observations) - MICROWAVE HUMIDITY SOUNDERS
2021021703 to 2021021709 2021021703 to 2021021709
Total number of obs = 51341 Total number of obs = 110941
AEOLUS HLOS WINDS RAYLEIGH CLEAR (ASCENDING)
© DMSPAIT(385132) © DMSP.18 (11500 A FY3D(2m) ¥ AMSR2 (T4%0) .Iou-m(a * NOAAID RN A METORA(11581) ¥ METOP-8 (M55

GPM (322 © METOPC (21443) W FYC (S200 FYao(nsn




Passive infrared (LEO and GEO

ECMWF data coverage (used observations) - IASI ECMWF data coverage (used observations) - CRIS
2021021703 to 2021021709 2021021703 to 2021021709
Total number of obs = 31460 Total number of obs = 20900
® VETOP.A (1008) * NETOPE (11328) A NETORC(WMW) * NPP XN * NOAAZS (118N

2021021703 to 2021021709
Total number of obs = 39517

ECMWF data coverage (used observations) - AMV IR POLAR ECMWF data coverage (used observations) - AMV IR POLAR
2021021703 to 2021021709 2021021703 to 2021021709 O RETIRSTS N1} hcion o) A vestsom V- e nen

Total number of obs = 4073 Total number of obs = 2171 -~ FY-20 O B METEOSAT-11 (3739) GOES-16 (10480) & GOES-17 (7396}
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Active sensors

ECMWF data coverage (used observations) - SCATTEROMETER ECMWF data coverage (used observations) - SEA LEVEL ANOMALY
2021021703 to 2021021709 20210215 00
Total number of obs = 24631 Total number of obs = 5376
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Altimeter
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2021021703 to 2021021709
Total number of obs = 25832

® METOP-A 2478) & TomaSAR-X (463) A METOP-B(23%1) W TenDEM-X (66)
KOMPSATS (019 B METORC 2775 PAZ ) + COSMIC2-E1 (3906) AEOLUS HLOS w‘ NDS RAYLEIGH CLEAR (ASCENDING)
A COSMIC2.£2(3%24) ¥ COSMIC2E3 3147 COSMIC2.ES (1680) W COSMIC2.£6 (2029)

128 data, Rayleigh channel, Clear type. Report type, layer: 1100.00 to 8.00000 hPa, data from: 210617 1o 09.05:056
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Which satellite observations
are most important for NWP ?



Impact of different sensor technologies

Percentage loss of forecast skill on denial
(global z500 anomaly correlation — SON 2020)

Day-1 Day-3 Day-6
Microwave (24) Infrared / vis (19) = GNSS RO (15) =SCAT (3) = Doppler Wind Lidar 2019 (1)




Which satellite observations
are most important for NWP ?

Sensor technology Processing route
< Passive microwave L1 Radiances :>
 Passive infrared L1 Radiances /AMV 4
e e ——————_
Radio occultation Bending angles

L2 wind / SLA/ SWH

Doppler wind lidar L2 LOS wind

Note that sensors available for NWP are typically downward looking instruments (not limb viewing)




What do passive microwave
and Iinfrared satellite
instruments measure ...?



What do passive microwave
and Iinfrared satellite
instruments measure ...?

They DO NOT measure TEMPERATURE

They DO NOT measure HUMIDITY or OZONE

They DO NOT measure WIND




SATELLITES CAN ONLY MEASURE OUTGOING
THERMAL RADIATION FROM THE ATMOSPHERE

Solar
Incident
Energy

Reflected
Energy "’




SATELLITES CAN ONLY MEASURE OUTGOING
THERMAL RADIATION FROM THE ATMOSPHERE

~— Top of atmosphere

Absorption/
seatfering ™ = : e
g d b Emission

Absorption The effects of
processes on
solar radiation
reaching earth's
surface are
estimated

/ Reflection emission
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Every atmosphere has its own complex

spectral radiance fingerprint ...

Radiance, ohu' sren”
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What do satellite instruments measure ?

Satellite instruments measure the radiation L that reaches the top
of the atmosphere at given frequency v .

The measured radiance is related to geophysical atmospheric
variables (T,Q,0,, clouds etc...) by the

Radiative Transfer Equation

measured. by the Our description of the atmosphere
satellite o
— — -

+ emission + reflection/ 4 contribution

Other contributions to the
measured radiances

L(V) —_ IOO B(V, -|- (Z))I: d T(V) :|d Surface Surtace Cloud/rain

0/'
Planck source term* depending Transmittance / Absorption
on temperature T(z) of the atmosphere i, the atmosphere



The Radiative Transfer (RT) equation

measu:e::ll_tby the depends on the state of the atmosphere
satellite
PG J— NG —
d Z-(V) Surface Surface Cloud/rain
L(V) I B (V T (Z))|: + emission + ;if;ftcet:'lonng/ + contribution +

Pt

m m m m m m . m @ w4 wm ™ m a




The Radiative Transfer (RT) equation

“Forward problem”

measureﬁl_ by the depends on the state of the atmosphere
satellite
G J— A~ —
d T(V) Surface surface 6 d/rain
L(V) j B (V T (Z))|: + emission + ;ifla?g:‘?nng/ + contribution +

...given the state of the atmosphere, what is the radiance...?

l.e. we can simulate what radiation would reach the satellite from a
particular atmosphere...




The Radiative Transfer (RT) equation

Observations from Meteosat-11 Simulated from the forecast model
Monday 23 September 2019 00 UTC ecmf t+0 VT:Monday 23 September 2019 00 UTC surface Cloudy brightness temperature
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Modern radiative transfer can simulate atmospheric radiation very accurately ...so why do these two
radiation images diverge ?



So by comparing simulated radiation to
real satellite observations we can tell if

the assumed state of the atmosphere IS
right or wrong.....




.....this is the basis for satellite radiance
data assimilation...



The Radiative Transfer (RT) equation

“Forward problem”

measu:eﬁ_tby the depends on the state of the atmosphere
satellite
—M — — T T
d Z-(V) Surface Surface Cloud/rain
L(v) = j B(v, T (Z)){ +emission 110N < ninyion +

“Inverse problem”



...but first we have to simplify things a bit...



“Channel selection” ...

...designing satellite instruments to
measure atmospheric radiation at very
specific frequencies (channels)



Measuring radiances in different frequencies
(channels)

By deliberately selecting radiation at different frequencies or CHANNELS
satellite instruments can provide information on specific geophysical
variables for different regions of the atmosphere.

In general, the frequencies / channels used within NWP
may be categorized as one of 2 different types ...

1. atmospheric sounding channels
2. surface sensing channels

Note:

In practice (and often despite their name!) real satellite instruments have
channels which are a combination of atmospheric sounding and surface
sensing channels



Atmospheric transmission at different wavelengths
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Atmospheric sounding
channels...



Atmospheric sounding
channels...
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Atmospheric sounding
channels...
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Atmospheric sounding
channels...
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Atmospheric sounding
channels...

...selecting channels where there is no contribution from
the surface....

dT V Surface
L0 =[ B, T(z»[ “} PSS 4 o 4 S

scattering



Atmospheric sounding
channels...

...selecting channels where there is no contribution from
the surface....

Ly =] B(V,T(z))[dg(z‘”) }dz +><+ x comouton +




Atmospheric sounding
channels...

...if we additionally screen observations to remove
measurements in cloudy or rain locations...

L(v) = J'OOOB(v,T(z))[dZ(ZV)}dZ +><+ ?(QCII "L




We now have a much simpler forward
...and inverse problem for the DA

L(v):J‘Ooo B(v,T(Z)){dZ(ZV)}dZ +. Yo+ ;r%@-l—fé%

in
on +

Screen data
to remove
clouds / rain




Atmospheric sounding channels...

These channels are located in parts of the infra-red and microwave spectrum for
which the main contribution to the measured radiance is from the atmosphere and
can be written:

d ( ) Where B=Planck function
T\V t = transmittance
L(V) j B(V T(Z)) T(z) is the temperature

z is a height coordinate

That is they try to avoid frequencies for which surface radiation and cloud contributions
are important. They are primarily used to obtain information about atmospheric
temperature and humidity (or other constituents that influence the transmittance e.g.
CO2).
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Surface sensing
Channels...



Surface sensing Channels
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Surface sensing Channels
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Surface sensing Channels

...selecting channels where there is no interaction in the
atmosphere....

dz' V Surface
L0 =[ B, T(z»[ “} PSS 4 o 4 S

scattering



Surface sensing Channels

...selecting channels where there is no interaction in the
atmosphere....

Surface Cloud/rain

d Surface flection/
Z +emission+ e ectl_on +contribution +
scattering

7(v)
d



Surface sensing Channels

...selecting channels where there is no interaction in the

atmosphere....
d Surface urfa_ Cloud/rain
L + emission + € attehon/ + contribution +

T

IR ~ zero

7(v)
d



Surface sensing Channels

...selecting channels where there is no interaction in the
atmosphere....

WV surf
{ )}dz

Screen data
to remove
clouds / rain



We now have a much simpler forward
...and inverse problem for the DA

L(v)

jooo B(v

7(v)

dz +

Surface
emission

Surfa_ce ud/rai
+ € .n/+contr tion + ...
sgHtte

Screen data
to remove
clouds / rain



Surface sensing Channels

These are located in window regions of the infra-red and microwave spectrum at
frequencies where there is very little interaction with the atmosphere and the primary
contribution to the measured radiance is:

Where T, is the surface skin

~ : el temperature and E the surface
L(v) = B[v,Tsn]e(U,V) (i.e. surface emission) emiosivty

These are primarily used to obtain information on the surface temperature and quantities
that influence the surface emissivity such as wind (ocean) and vegetation (land). They
can also be used to obtain information on clouds/rain and cloud movements (to provide
wind information)
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What type of channels are
most important for NWP ?



Atmospheric temperature
sounding...



Atmospheric temperature sounding — weighting functions

If radiation is selected in an atmospheric sounding channel for which

dr(v)}

L(v)=] B(v, T(z))[

and we define a function H(z) = [(;_T}
Z

When the primary absorber is a well mixed gas (e.g. oxygen or CO,) with
known concentration it can be seen that the measured radiance is
essentially a weighted average of the atmospheric temperature profile, or

L(v) = | BT (2)) H(z)dz

The function H(z) that defines this vertical average is known as a
WEIGHTING FUNCTION



What do weighting functions look like ?

L(v)=[ B(~T(2))

Absorption

Pressure
£ in scale Raights
4 i
Pre:

N

V2 Frequency

Vo V1

Transmission Weighting function



What do weighting functions look like ?

High in the atmosphere «
very little radiation is
emitted, but most will
reach the satellite

!
At some level there is an } )
optimal balance between the
amount of radiation emitted
and the amount reaching the
top of the atmosphere

v

A lot of radiation is emitted from the v
dense lower atmosphere, but very ‘
little survives to the top of the

atmosphere due to absorption.



What do weighting functions look like ?

.

High in the atmosphere «

A lot of radiatio v >
dense lower at , L T o
little survives to the top of the

atmosphere due to absorption.




What do weighting functions look like ?

For any given channel the altitude at which the peak of the
weighting function occurs depends on the strength of
atmospheric absorption :

*Channels in parts of the spectrum where the absorption is strong (e.qg.
near the centre of CO2 or O2 lines ) peak high in the atmosphere

*Channels in parts of the spectrum where the absorption is weak (e.g. in
the wings of CO,, O, lines) peak low in the atmosphere

By building a satellite instrument that measures radiation in
many different channels, all with varying absorption strengths
we sample the atmospheric temperature profile at different
altitudes (but of course not independently!)




What do real weighting functions look like ?
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What are the implications of these
broad weighting functions for Data
Assimilation ?




The implications of broad weighting
functions H(z)
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Screen data
to remove
clouds / rain




The implications of broad weighting
functions H(z)

In principle for a single
channel an infinite number
of different temperature
profiles could produce
exactly the same measured
radiance...

- -—— "
~ = =

The extraction of
temperature information
within the data assimilation
- for these observations is
—> mathematically ill-posed

See paper by Rodgers 1976 Retrieval of atmospheric temperature and composition from remote
measurements of thermal radiation. Rev. Geophys.Space. Phys. 14, 609-624
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The implications of broad weighting

functions H(z)
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In principle for a single
channel an infinite number
of different temperature
profiles could produce
exactly the same measured
radiance...

The extraction of
temperature information
within the data assimilation
for these observations Is
mathematically ill-posed

But having lots of different
channels improves
resolution...see later lecture

See paper by Rodgers 1976 Retrieval of atmospheric temperature and composition from remote
measurements of thermal radiation. Rev. Geophys.Space. Phys. 14, 609-624



What are the implications of these
broad weighting functions for Data
Assimilation ...?

...there are some vertical scales we
cannot measure...

...the assimilation of satellite
radiance data relies heavily on prior
or background information ...




A QUICK REVIEW OF KEY CONCEPTS

«Satellite instruments measure radiance (not T,Q or wind)

* Downward looking satellite radiances are broad vertical
averages of the temperature /humidity profile (defined by the
weighting functions)

*The estimation of atmospheric temperature (or humidity) from
the radiances is mathematically ill- posed and all L2 retrieval /
DA algorithms rely heavily on background prior information




Questions ?



Planck's law

From Wikipedia, the free encyclopedia
{Redirected from Planck's law of black body radiation)

For a general introduction, see black body.

In physics, Planck's law describes the spectral radiance of electromagnetic
radiation at all wavelengths from a black body at temperature T. As a function of
frequency v, Planck's law is written as:[1]
ahpdio |
HG 7 B

£ exT — 1]

This function peaks for hy = 2 82kT [2]

As a function of wavelength A it is written (for unit solid angle) as:[3]
2hc? 1
N ol _

Mote also that the two functions have different units — the first is radiance per

ATy

unit frequency interval while the second is radiance per unit wavelength interval.

Hence, the quantities [y ,T) and I{A,T) are not equivalent to each other. To
derive one from the other, they cannot simply be set equal to each other (ie: the
expression for A interms of v cannot just be substituted into the first equation to
get the second). However, the two equations are related through:

(v, T)dv = —I(\,T) d\.

One can easily step from the first formula into the latter by using:
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The key elements of a satellite
data assimilation system



elements of a data assimilation system

observation operator
background errors
observation errors
bias correction

data selection and quality control



Key elements of a data assimilation system

 oObservation operator



Observation operator

* The observation operator must map the model state at
beginning of the assimilation window (t=0) to the
observation time and location.

 In the direct assimilation of radiance observations, the
observation operator must incorporate an additional step
to compute radiances from the model state variables
(radiative transfer model RTTOV).

« This means that radiance observations are significantly
more computationally expensive than conventional
observations (e.g. radiosonde temperature data)



Observation operator

1) Time evolution of forecast model field to OBS time

X =0 X (=t(obs)



Observation operator

2) Spatial interpolation of model grid to OBS location




Observation operator

3) Radiative transfer calculation from model state at that
location to radiances at that location
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Key elements of a data assimilation system

 background errors



Background errors (and vertical resolution)

« The matrix B must accurately describe errors in the
background estimate of the atmospheric state. It
determines the weight given to the background
iInformation.

« Avery important aspect for the assimilation of near-nadir
viewing satellite radiances are the vertical correlations
that describe how background errors are distributed in the
vertical (sometimes called structure functions)

* These are important because satellite radiances have
very limited vertical resolution (previous lecture)



Background errors (and vertical resolution)
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Background errors (and vertical resolution)

Sharp / anti-correlated Broad / deep correlated
background errors background error
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Background errors (and vertical resolution)

Sharp / anti-correlated Broad / deep correlate
background errors

Error standard deviation (K) Error standard deviation (K)



Key elements of a data assimilation system

e oObservation errors



Observation errors:

« These determine the weight we give to the radiance
observations. The observation error must account for
Instrument noise, random uncertainties in the
observation operator (e.g. RT model), errors in data
screening (e.g. residual clouds) and errors of
representativeness (e.g. scale mismatch).

 Itis important to model both the magnitude of errors
(diagonals of R) and any inter-channel correlations

* Wrongly specified observation errors can lead to an
analysis with larger errors than the background!




Observation errors:

« Specifying the correct observation error produces an
optimal analysis with minimum error.

analysis
error

background error

optimal
analysis

true OBS specified OBS
error error



Observation errors:

« Over-estimating the OBS error degrades the analysis,
but the result will not be worse than the background.

analysis
error

background error

Sub-optimal
analysis

true OBS specified OBS
error error



Observation errors:

« Under-estimating the OBS error degrades the analysis,
and the result can be worse than the background!

analysis
error

background error

Sub-optimal
analysis

true OBS specified OBS
error error



Key elements of a data assimilation system

e Dblas correction



Bias correction:

Systematic errors must be removed otherwise biases will
propagate in to the analysis (causing global damage in the
case of satellites!). A bias in the radiances is defined as:

bias = mean [Yobs — H(Xtrue) ]

Sources of systematic error in radiance assimilation include:
* instrument error (scanning or calibration)

 radiative transfer error (spectroscopy or RT model)

 cloud / rain / aerosol screening errors



Key elements of a data assimilation system

« data selection and quality control



Data selection and quality control (QC):

The primary purpose of this is to ensure that the
observations entering the analysis are consistent with the
assumptions in the observations error covariance (R) and
the observation operator (H).

Primary examples include the following:

* Rejecting bad data with gross error (not described by R)
* Rejecting data affected by clouds if H is a clear sky RT

« Thinning data if no correlation is assumed (in R)

« Always blacklisting data where we do not trust our QC!



Data selection and quality control:

« Missed rejection of a bad observation

.................

B e i T T TR S S Gy S Uy S

T T

The radiance are contaminated by
cloud (cold 5K) compared to the
clear sky value.

But our computation of the clear sky
value from the background is also
cold by 5K due to an error in the
surface skin temperature.

Thus our checking (against the
background) sees no reason to
reject the observation and is it
passed!



Summary

observation operator

(complex and expensive for radiances)
background errors

(important due to limited vertical resolution)

observation errors
(a challenge to specify correctly)

bias correction
(small, but global impact of bias)

data selection and quality control
(primarily data selection, few bad observations)



Questions ?



Spare slides



TRAINING
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Numerical Weather Prediction




ECMWF/EUMETSAT NWP-SAF
Satellite data assimilation Training Course

Why do we need satellites
and what do they measure ?

May 2021



Observation operator (RT component)

The RT model should produce an accurate simulation of
the satellite radiance from the model state, based
upon the best knowledge of the instrument characteristics
and up to date spectroscopic information.

However, the model must be fast enough to process
huge guantities of data in near real time (thus line-by-line
models are not suitable)

In addition, the adjoint and tangent linear versions of
the RT model are required by the algorithm that
minimises the cost function

ldeally the same RT model should be used for all
satellite sensors being assimilated
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