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A Covid story - part 3
+ 0 h Vaccine

+ 1 h 36.0◦C
+ 2 h 36.0◦C
+ 3 h 36.0◦C
+ 6 h 36.5◦C
+ 7 h 37.0◦C
+ 8 h 38.0◦C

+ 8 h Medicine

+ 9 h 37.5◦C
+ 10 h 37.0◦C
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Strong Constraint 4D-Var
✘ So far, we have tacitly assumed that the observations, analysis and

background are all valid at the same time, so that H includes spatial, but
not temporal, interpolation.

✘ In 4D-Var, we relax this assumption.

✘ Let’s use G to denote a generalised observation operator that:
1. Propagates model fields defined at some time t0 to the (various) times at which the

observations were taken.
2. Spatially interpolates these propagated fields
3. Converts model variables to observed quantities

✘ We will use a numerical forecast model to perform the first step.

✘ Note that, since models integrate forward in time and we do not have an
inverse of the forecast model, the observations must be available for times
tk ≥ t0, for k ∈ {1,2, · · · ,K}.
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Strong Constraint 4D-Var
✘ Formally, the 4D-Var cost function is identical to the 3D-Var cost function

— we simply replace H by G :

J(x) =
1
2
(x−xb)

T Pb−1
(x−xb)+

1
2

[
y−G(x)

]T
R−1

[
y−G(x)

]
✘ However, it makes sense to group observations into sub-vectors of

observations, yk , that are valid at the same time, tk .
✘ It is reasonable (or at least convenient) to assume that observation errors

are uncorrelated in time. Then, R is block diagonal, with blocks Rk

corresponding to the sub-vectors yk .

y =


y0
...

yk
...

yK

 , R =


R0

. . . 0
Rk

0 . . .
RK

 , and G(x) =


G0(x)

...
Gk(x)

...
GK (x)
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Strong Constraint 4D-Var

J(x) =
1
2
(x−xb)

T Pb−1
(x−xb)

+
1
2

K

∑
k=0

[
yk −Gk(x)

]T
R−1

k

[
yk −Gk(x)

]

y0 y1 y2 y3 · · · yK

x

G0 G1 G2 G3 GK

Time
t0 t1 t2 t3 tK

Analysis window
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Strong Constraint 4D-Var
✘ Let us introduce model states xk , which are defined at times tk .
✘ Now, each generalised observation operator can be written as

Gk = Hk (xk)

where Hk represents a spatial interpolation and transformation from model
variables to observed variables — i.e. a 3D-Var-style observation operator.

y0 y1 y2 y3 · · · yK

x0 x1 x2 x3 · · · xK

H0 H1 H2 H3 · · · HK

Time
t0 t1 t2 t3 tK

Analysis window
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Strong Constraint 4D-Var
✘ Then, we can write the cost function as:

J (x0,x1, · · · ,xK ) =
1
2
(x0−xb)

T Pb−1
(x0−xb)

+
1
2

K

∑
k=0

[
yk −Hk(xk)

]T
R−1

k

[
yk −Hk(xk)

]
.

✘ We will use a numerical forecast model to propagate model fields from
time t0 to time tk , for k ∈ {1,2, · · · ,K}:

xk = Mt0→tk (x0)

= Mtk−1→tk (xk−1) ,

where Mt0→tk represents an integration of the forecast model from time t0
to time tk and Mtk−1→tk from time tk−1 to time tk .

✘ Now, each generalised observation operator can be written as the
concatenation of the model Mt0→tk and the observation operator Hk :

Gk = Hk ◦Mt0→tk .
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Strong Constraint 4D-Var
Unconstrained minimisation problem

✘ We had initially an unconstrained minimisation problem:

xa = argmin
x

(J(x))

where possibly x = (x0,x1, · · ·xK )

Strong constraint 4D-Var
✘ By introducing the forecast model Mt0→tk from time t0 to time tk that links

xk to x0, we have converted the minimisation problem into a problem with
strong constraints:

xa = argmin
x0

(J(x0,x1, · · ·xK ))

where xk = Mt0→tk (x0) for k = 1,2, · · · ,K

✘ For this reason, this form of 4D-Var is called strong constraint 4D-Var.
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Strong Constraint 4D-Var
Initial formulation

y0 y1 y2 y3 · · · yK

x

G0 G1 G2 G3 GK

Time
t0 t1 t2 t3 tK

Strong Constraint formulation

y0 y1 y2 y3 · · · yK

x0 x1 x2 x3 · · · xKMt0,1 Mt1,2 Mt2,3

H0 H1 H2 H3 · · · HK

Time
t0 t1 t2 t3 tK
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Strong Constraint 4D-Var
✘ When we derived the 3D-Var cost function, we assumed that the

observation operator was perfect: yt = H (xt).

✘ In deriving strong constraint 4D-Var, we have not removed this
assumption.

✘ The generalised observation operators, Gk , are assumed to be perfect.

✘ In particular, since Gk = Hk ◦Mt0→tk , this implies that the model is perfect:

xt,k = Mtk−1→tk (xt,k−1) .

✘ This is called the perfect model assumption.
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Strong Constraint 4D-Var

J (x0,x1, · · ·xk) =
1
2
(x0−xb)

T Pb−1
(x0−xb)

+
1
2

K

∑
k=0

[
yk −Hk(xk)

]T
R−1

k

[
yk −Hk(xk)

]
✘ When written in this form, it is clear that 4D-Var determines the analysis

state at every gridpoint and at every time within the analysis window.

✘ I.e., 4D-Var determines a four-dimensional analysis of the available
asynoptic data.

✘ As a consequence of the perfect model assumption, the analysis
corresponds to a trajectory (i.e. an integration) of the forecast model.
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Strong Constraint 4D-Var
✘ In general, unconstrained minimisation problems are easier to solve than

constrained problems.
✘ To minimise the cost function, we write it as a function of x0 and xk :

J(x0) =
1
2
(x0−xb)

T Pb−1
(x0−xb)

+
1
2

K

∑
k=0

[
yk −Hk(xk)

]T
R−1

k

[
yk −Hk(xk)

]
✘ We avoid repeating integrations of the model with the following algorithm:

J := 1
2 (x0−xb)

T Pb−1
(x0−xb);

for k = 0,1, · · · ,K do
/* Add the contribution of time tk */

J := J + 1
2

[
yk −Hk(xk)

]T
R−1

k

[
yk −Hk(xk)

]
;

/* Integrate the model from time tk to time tk+1 */
xk+1 := Mtk→tk+1 (xk) ;

end
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Strong Constraint 4D-Var
✘ As in 3D-Var, efficient minimisation of the cost function requires us to

calculate its gradient.
✘ Differentiating the unconstrained version of the cost function with respect

to x0 gives:

∇J(x0) = Pb−1
(x0−xb)−

K

∑
k=0

GT
k R−1

k

[
yk −Hk(xk)

]
✘ Now, Gk is the Jacobian of Gk , and:

Gk = Hk ◦Mt0→tk

= Hk ◦Mtk−1→tk ◦Mtk−2→tk−1 · · ·Mt0→t1

✘ Hence:
Gk = HkMtk−1→tk Mtk−2→tk−1 · · ·Mt0→t1

✘ And:
GT

k = MT
t0→t1 · · ·M

T
tk−2→tk−1

MT
tk−1→tk HT

k
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Strong Constraint 4D-Var
✘ Let us consider how to evaluate the second term of ∇J(x0):

K

∑
k=0

GT
k R−1

k

[
yk −Hk(xk)

]
= HT

0R−1
0

[
y0−H0(x0)

]
+ MT

t0→t1H
T
1R−1

1

[
y1−H1(x1)

]
+ MT

t0→t1M
T
t1→t2H

T
2R−1

2

[
y2−H2(x2)

]
...

+ MT
t0→t1M

T
t1→t2 · · ·M

T
tK−1→tK HT

K R−1
K

[
yK −HK (xK )

]
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Strong Constraint 4D-Var
✘ Let us consider how to evaluate the second term of ∇J(x0):

K

∑
k=0

GT
k R−1

k

[
yk −Hk(xk)

]
= HT

0R−1
0

[
y0−H0(x0)

]
+ MT

t0→t1 HT
1R−1

1

[
y1−H1(x1)

]
+ MT

t0→t1 MT
t1→t2 HT

2R−1
2

[
y2−H2(x2)

]
...

+ MT
t0→t1 MT

t1→t2 · · ·MT
tK−1→tK HT

K R−1
K

[
yK −HK (xK )

]
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Strong Constraint 4D-Var
✘ Let us consider how to evaluate the second term of ∇J(x0):

K

∑
k=0

GT
k R−1

k

[
yk −Hk(xk)

]
= HT

0R−1
0

[
y0−H0(x0)

]
+ MT

t0→t1 HT
1R−1

1

[
y1−H1(x1)

]
+ MT

t0→t1 MT
t1→t2 HT

2R−1
2

[
y2−H2(x2)

]
...

+ MT
t0→t1 MT

t1→t2 · · ·MT
tK−1→tK HT

K R−1
K

[
yK −HK (xK )

]
= HT

0R−1
0

[
y0−H0(x0)

]
+ MT

t0→t1

{
HT

1R−1
1

[
y1−H1(x1)

]
+ MT

t1→t2

{
HT

2R−1
2

[
y2−H2(x2)

]
+MT

t2→t3 {· · ·
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Strong Constraint 4D-Var
✘ Hence, to evaluate the gradient of the cost function, we can use the

following algorithm:
∇J := 0;
for k = K ,K −1, · · · ,1 do

/* Add the contribution of time tk */
∇J := ∇J −HT

k R−1
k

[
yk −Hk(xk)

]
;

/* Integrate the adjoint model from time tk to time tk−1

*/
∇J := MT

tk−1→tk ∇J ;
end
/* Add the contribution from the observations at t0, and

the contribution from the background term: */

∇J := ∇J −HT
0R−1

0

[
y0−H0(x0)

]
+Pb−1

(x0−xb) ;

✘ Each MT
tk−1→tk corresponds to a timestep of the adjoint model.

✘ Note that the adjoint model is integrated backwards in time, starting from
tK and ending with t0.
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The incremental Method
✘ We have seen how the 4D-Var cost function and gradient can be

evaluated for the cost of
➫ one integration of the forecast model
➫ one integration of the adjoint model

✘ This cost is still prohibitive:
➫ The cost of the adjoint model is typically 3 times that of the forward model.
➫ The cost of one evaluation of the gradient is therefore about 4 times the forward

model or about 2 days of forward model integration for a 12-hours assimilation
window.

➫ A typical minimisation will require between 10 and 100 evaluations of the gradient.
➫ Hence, the cost of the analysis is roughly equivalent to between 20 and 200 days of

model integration.

✘ The incremental algorithm was introduce to reduce the cost of 4D-Var by
reducing the resolution of the model.
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The incremental Method
✘ The incremental method can be applied to both 3D-Var and 4D-Var, so

let’s return to the general expression for the cost function:

J(x) =
1
2
(x−xb)

T Pb−1
(x−xb)+

1
2

[
y−G(x)

]T
R−1

[
y−G(x)

]
✘ We introduce a linearisation state x(m), for m ∈ {1,2, · · · ,M}, and write

x = x(m)+δx(m)

✘ We linearise the generalised observation operators around x(m):

G(x) = G
(

x(m)+δx(m)
)

≈ G
(

x(m)
)
+Gδx(m)

✘ We introduce the innovation d(m):

d(m) = y−G
(

x(m)
)
,

✘ and the background increment δxb as:

xb = x(m)+δxb
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The incremental Method
✘ The cost function can be written in terms of the increment δx(m), and

approximated by the quadratic function:

J
(

δx(m)
)

=
1
2

[
δx(m)−δxb

]T
Pb−1

[
δx(m)−δxb

]
+

1
2

[
d(m)−Gδx(m)

]T
R−1

[
d(m)−Gδx(m)

]
✘ The incremental method treats the minimisation of J as a sequence of

quadratic problems:
for m = 0,1, · · · ,M do

/* Minimise the quadratic cost function J
(
δx(m)

)
*/

δx(m)
a = argminx

[
J
(
δx(m)

)]
;

/* Set the new linearisation state */

x(m+1) = x(m)+δx(m)
a ;

end
✘ In this form, if the minimisation converges, it will converge to the solution

of the original problem.
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The incremental Method

x

J

J
(
δx(0)

)
J (x)

Starting point

δx(0)
a
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The incremental Method

x

J

J
(
δx(0)

)

J
(
δx(1)

)
J
(
δx(2)

)

J (x)

Starting point

δx(0)
a

δx(1)
a

δx(2)
a
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The incremental method with Lanczos
for m = 0,1, · · · ,M do

/* Change of variable */
χ(m) = L−1

(
x(m)−xb

)
;

/* */
/* Minimise the quadratic cost function J(χ(m)) */
/* If m > 0 precondition with I+∑

K
i=1

(
λ
−1/2
i −1

)
vivT

i ≈(J ′′)
−1/2 */

/* */

χ
(m)
a = argminχ

[
J
(
χ(m)

)]
;

/* */
/* Compute the first K eigenvalues/vectors of J ′′ */
λi = · · · ;
vi = · · · ;
/* */
/* Set the new linearisation state */

x(m+1) = x(m)+Lχ
(m)
a ;

/* */
end
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The incremental Method
✘ However, to reduce the computational cost of the analysis, we can make a

further approximation, and evaluate the quadratic cost function at lower
resolution:

J
(

δx̃(m)
)

=
1
2

(
δx̃(m)−δx̃b

)T
P̃b−1

(
δx̃(m)−δx̃b

)
+

1
2

[
d(m)− G̃δx̃(m)

]T
R−1

[
d(m)− G̃δx̃(m)

]
where ·̃ indicates low resolution, and where x̃b, etc. are interpolated from
the corresponding full-resolution fields.

✘ When the quadratic cost function is approximated in this way, 4D-Var no
longer converges to the solution of the original problem.
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The incremental Method
✘ Incremental formulation:

J
(

δx̃(m)
)

=
1
2

(
δx̃(m)−δx̃b

)T
P̃b−1

(
δx̃(m)−δx̃b

)
+

1
2

[
d(m)− G̃δx̃(m)

]T
R−1

[
d(m)− G̃δx̃(m)

]
✘ The analysis increments are calculated at reduced resolution and must be

interpolated to the high-resolution model’s grid.

✘ Note, however that d(m) = y−G
(
x(m)

)
is evaluated using the

full-resolution versions of G and x(m).

✘ I.e. the observations are always compared with the full resolution
linearisation state. The reduced-resolution observation operator only
appears applied to increments: G̃δx̃(m).
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FGAT formulation
✘ The first guess at appropriate time (FGAT) formulation was introduced to

further reduce the cost of the 4D-Var.
✘ Cost function in terms of the increment δx0:

J (δx0) =
1
2
[δx0−δxb]

T Pb−1
[δx0−δxb]

+
1
2

K

∑
k=0

[dk −Gkδx0]
T R−1

k [dk −Gkδx0] ,

with:
➫ dk = yk −Gk (x0)

➫ Gk = HkMtk−1→tk Mtk−2→tk−1 · · ·Mt0→t1

✘ FGAT approximation:
➫ Mtk−1→tk ≡ I for k = 1,2, · · · ,K .

J (δx0) =
1
2
[δx0−δxb]

T Pb−1
[δx0−δxb]

+
1
2

K

∑
k=0

[dk −Hkδx0]
T R−1

k [dk −Hkδx0] .
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FGAT formulation

J (δx0) =
1
2
[δx0−δxb]

T Pb−1
[δx0−δxb]

+
1
2

K

∑
k=0

[dk −Hkδx0]
T R−1 [dk −Hkδx0]

∇J (δx0) = Pb−1
[δx0−δxb]−

K

∑
k=0

HT
k R−1

k [dk −Hkδx0] .

✘ No model integration in the minimisation:
➫ Computationally much cheaper than general 4D-Var.
➫ Yet the comparison between the model and the observations is computed at the

right observation time.

✘ Analysis increment valid for the entire analysis window:
➫ The model should vary slowly within the analysis window preferably. This is the

case for the ocean when the analysis window is 24 hr (see lecture on Friday).
➫ Analysis increment usually added in the middle of the analysis window.

✘ Could be combined with incremental approach.
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Weak Constraint 4D-Var
✘ The perfect model assumption limits the length of analysis window that

can be used to roughly 12 hours (for an NWP system).
✘ To use longer analysis windows (or to account for deficiencies of the

model that are already apparent with a 12-hour window) we must relax the
perfect model assumption.

✘ We saw already that strong constraint 4D-Var can be expressed as:

xa = argmin
x0

(J(x0,x1, · · ·xk))

subject to xk = Mtk−1→tk (xk−1) for k = 1,2, · · · ,K

✘ In weak constraint 4D-Var, we define the model error ηk as

xk = Mtk−1→tk (xk−1)+ηk for k = 1,2, · · · ,K

and we allow ηk to be non-zero.
✘ Note that now x0 is not enough to determine the states xk for k = 1, · · · ,K

©ECMWF 31 / 38



EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS October 29, 2014

Weak Constraint 4D-Var
✘ We can derive the weak constraint cost function using Bayes’ rule:

p(x0 · · ·xK |y0 · · ·yK ) =
p(y0 · · ·yK |x0 · · ·xK )p(x0 · · ·xK )

p(y0 · · ·yK )

✘ The denominator is independent of x0 · · ·xK .
✘ The first term of the numerator simplifies to:

p(y0 · · ·yK |x0 · · ·xK ) =
K

∏
k=0

p(yk |xk) ,

assuming that the observation yk is independent of xl for l ̸= k .
✘ Hence

p(x0 · · ·xK |y0 · · ·yK ) ∝

[
K

∏
k=0

p(yk |xk)

]
p(x0 · · ·xK )
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Weak Constraint 4D-Var

p(x0 · · ·xK |y0 · · ·yK ) ∝

[
K

∏
k=0

p(yk |xk)

]
p(x0 · · ·xK )

✘ Taking minus the logarithm gives the cost function:

J(x0 · · ·xK ) =−
K

∑
k=0

log
[
p(yk |xk)

]
− log

[
p(x0 · · ·xK )

]
✘ The term involving yk is familiar. It is the observation term of the strong

constraint cost function.
✘ The final term is less familiar. It represents the a priori probability of the

sequence of states x0 · · ·xK .
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Weak Constraint 4D-Var
✘ Given the sequence of states x0 · · ·xK , we can calculate the corresponding

model errors:

ηk = xk −Mtk−1→tk (xk−1) for k = 1,2, · · · ,K
✘ We can use our knowledge of the statistics of model error to define

p(x0 · · ·xK )≡ p(x0;η1 · · ·ηK )

✘ One significant assumption is to assume that model error is uncorrelated
in time. In this case:

p(x0 · · ·xK )≡ p(x0)
K

∏
k=1

p (ηk)

✘ p(x0) is familiar. It is the background term of the strong constraint cost
function.

✘ If we take p(ηk) as Gaussian with covariance matrix Qk , we see that weak
constraint 4D-Var adds the following term to the cost function:

1
2

K

∑
K=1

η
T
k Q−1

k ηk
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Weak Constraint 4D-Var
✘ Hence, for Gaussian, temporally-uncorrelated model error, the weak

constraint cost function is:

J (x0,x1, · · ·xk) =
1
2
(x0−xb)

T Pb−1
(x0−xb)

+
1
2

K

∑
k=0

[
yk −Hk(xk)

]T
R−1

k

[
yk −Hk(xk)

]
+

1
2

K

∑
k=1

η
T
k Q−1

k ηk where xk = Mtk−1→tk (xk−1)+ηk .

y0 y1 y2 y3 · · · yK

x0 x1 x2 x3 · · · xK

η1 η2 η3 ηK

Mt0,1 Mt1,2 Mt2,3

H0 H1 H2 H3 · · · HK

Time
t0 t1 t2 t3 tK
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Weak Constraint 4D-Var
✘ In strong constraint 4D-Var, we can use the constraints to reduce the

problem of minimising a function of x0 · · ·xK to that of minimising a
function of the initial state x0 only.

✘ This is not possible in weak constraint 4D-Var — we must either:
➫ minimise the function J (x0 · · ·xK ), or:
➫ express the cost function as a function of x0 and η1 · · ·ηK .

✘ Although the two approaches are mathematically equivalent, they lead to
very different minimisation problems, with different possibilities for
preconditioning.

➫ It is not yet clear which approach is the best.
➫ Formulation of an incremental method for weak constraint 4D-Var also remains a

topic of research.

✘ Finally, note that model error is unlikely to be temporally uncorrelated.
➫ Indeed, initial attempts to account for model error in the ECMWF analysis are

concentrated on representing only the bias component of model error (i.e. model
error is assumed constant over the analysis window).

✘ There is a whole 1-hour lecture on model error Thursday.
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Outline

1 Strong Constraint 4D-Var: Derivation

2 Strong Constraint 4D-Var: Calculating the Cost and Gradient

3 The Incremental Method

4 FGAT formulation

5 Weak Constraint 4D-Var

6 Summary
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Summary
✘ Strong Constraint 4D-Var is an extension of 3D-Var to the case where

observations are distributed in time.

✘ The observation operators are generalised to include an integration of the
forecast model.

✘ The model is assumed to be perfect, so that the four-dimensional analysis
state corresponds to an integration (trajectory) of the model.

✘ The incremental method allows the computational cost to be reduced to
acceptable levels.

✘ The FGAT approximation allows to further reduce the cost but relies on
strong assumption on the model evolution.

✘ Weak Constraint 4D-Var allows the perfect model assumption to be
removed.
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