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Standard Kalman Filter
• In the Overview talk we have seen that, assuming all errors have Gaussian statistics, 

the posterior (i.e., analysis) distribution 𝑝(𝒙|𝒚) can also be expressed as a Gaussian 
distribution:

• Kalman Filter methods are designed to find the mean and covariance of this 
posterior distribution and to cycle it in time

• Under this Gaussian assumption, knowing the mean and covariance of 𝑝(𝒙|𝒚) 
amounts to knowing the full posterior pdf
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Standard Kalman Filter
• Let us consider a univariate 1-D example: 

Assume we are analysing a single state variable x, whose errors are zero mean and 
normally distributed around its background forecast xb:

We have one observation of the state variable, also with Gaussian errors:

Applying Bayes theorem we find:

Comparing to a standard Gaussian distribution: 

we see that the posterior distribution 𝑝 𝑥|𝑦 is also Gaussian with mean and variance: 
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Standard Kalman Filter
Defining the Kalman gain: 𝐾 ≝ #!

"
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" the equations for the mean and variance can be 

recast as:

The posterior variance is thus reduced (1-K<0) with respect to the prior (background) 
variance, while the posterior mean is a linear, weighted average of the prior 
(background) and the observation.
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Standard Kalman Filter
• These Kalman Filter analysis update equations can be generalised to the multi-dimensional 

and multivariate case (Wikle and Berliner, 2007; Bromiley, 2014): 

• These are the same update equations for the state 𝒙 and its uncertainty 𝐏 obtained in the 
lecture on Assimilation Algorithms (1).  

• In that context they were derived without making assumptions of Gaussianity, but looking for 
the analysis estimate which had: 1) the minimum error variance and 2) could be expressed as 
a linear combination of the background and the observations (we called it the BLUE, Best 
Linear Unbiased Estimate). Linearity of observation operator and model was invoked.  

• If the background and observations are normally distributed, the KF update equations give 
the mean and the covariance of the posterior distribution. Under these hypotheses the 
posterior distribution is also Gaussian, so we have completely solved the problem! 
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Standard Kalman Filter
• In NWP applications of data assimilation we want to update our estimate of the state and its 

uncertainty at later times, as new observations come in: we want to cycle the assimilation

• For each analysis update in this cycle, we require a background xbt (i.e. a prior estimate of the 
state valid at time t)

• Usually, our best prior estimate of the state at time t is given by a forecast from the preceding 
analysis at time t-1 (the “background”):

xbt=	M(xat-1)

• What is the error covariance matrix (=> the uncertainty) associated with this background?



Standard Kalman Filter
xbt=	M(xat-1)

• Subtract the true state x*t		 from both sides of the equation:

xb - x*t=	εbt=	M(xat-1)	- x*t

• Since xat-1=	x*t-1	+	εat-1 we have:

εbt=	M(x*t-1	+	εat-1)	- x*t		≈	

M(x*t-1)+	Mεat-1 - x*t		=

Mεat-1+	ηt

• Here we have defined the model error ηt≝ M(x*t-1) - x*t

• We assume small errors (linearisation of model) and no systematic errors are 
present in our system (or have been separately dealt with!)

< εa > = < η> = 0     =>     < εb > = 0



Standard Kalman Filter
• The background error covariance matrix will then be given by:

Pbt≝<εbt (εbt)T>≝=	<(Mεat-1+	ηt)	(Mεat-1+	ηt)T>	=

M<εat-1 (εat-1)T>	MT+	<ηt	(ηt)T>	=

=	MPat-1MT+	Qt

• Here we have assumed < εat-1 (ηt	)T>	=	0 and defined the model error covariance 
matrix Qt≝<ηt	(ηt)T>

• Note how the background error is described as the sum of the errors of the 
previous analysis propagated by the linear (or linearised) model dynamics to the 
time of the new update (MPat-1MT,	also called “predictability” error covariance) and 
the new additive errors introduced by the model integration (Qt)

• We now have all the equations necessary to propagate and update both the state 
and its error estimates



Standard Kalman Filter

Propagation
Update

t-1 t t+1xat-1
Pat-1

New Observations

3. Compute the Kalman Gain   
           K	=	Pb	HT(H	Pb	HT	+	R)-

4. Update state estimate       
xat	=	xbt	+	K	(y	-	H(xbt))

5. Update state error estimate 
Pat	=	(I	–	KH)Pbt	(I	–	KH)T	+	KRKT			

1. Predict the state ahead           
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2. Predict the state error cov.
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Standard Kalman Filter
• Under the assumption that the model M and the observation operator H are linear 

operators (i.e., they do not depend on the state x), the Kalman Filter produces an 
optimal sequence of analyses (xa1, xa2, …, xat-1,	xat)

• The KF analysis xat is the best (minimum error variance) linear unbiased estimate 
of the state at time t, given xbt and all observations up to time t (y0,y1,…,yt).

• Note that Gaussianity of errors has not been invoked. If errors are Gaussian the 
Kalman Filter provides  the correct posterior conditional probability estimate 
(according to Bayes’ Law), i.e. p(xat| xb0;	y0,y1,…,yt). This also implies that if errors 
are Gaussian then the state estimated with the KF is also the most likely state (the 
mode of the pdf).



Extended Standard Kalman Filter
• The extended Kalman Filter (EKF) is a non-linear extension of the Kalman Filter 

where the model and observation operators are allowed to be nonlinear operators 
(independent of the state) as in the standard KF:

𝐲 =H 𝐱𝒃 + 𝜺𝒐 (EKF) 𝐲 = 𝐇𝐱𝒃 + 𝜺𝒐 (KF)

𝐱𝐛 =M 𝐱𝒂 + 𝛈 (EKF) 𝐱𝒃 = 𝐌𝐱𝒂 + 𝛈 (KF)

• The covariance update and prediction steps of the KF equations use the Jacobians 
of the model and observation operators, linearized around the current state 
estimate:

M= 8M
8𝒙 (xt),    H = 8H

8𝒙(xt)

• The EKF is thus a first order linearization of the KF equations around the current 
state estimates. Reasonable for systems which are only moderately nonlinear on 
the timescales of the DA cycle update interval 

• A type of EKF has long been used in the land DA community (and ECMWF) in the 
analysis of soil variables (Simplified Extended Kalman Filter, SEKF). More on this 
later this week in the Land DA lecture.



Kalman Filters for large dimensional systems

• The Kalman Filter (standard or extended) is unfeasible for large dimensional 
systems

• The size N of the analysis/background state in the ECMWF 4DVar is O(108): the KF 
requires us to store and evolve in time state covariance matrices (Pa/b) of O(NxN)
Ø The World’s fastest computer can sustain ~ 1018 operations per second
Ø An efficient implementation of matrix multiplication of two 108x108 matrices 

requires ~1022 (O(N2.8))operations: hours on current fast HPCs!
Ø Brute force evaluating  Pbt=	MPat-1MT+	Qk requires 2*N≈2*108 model 

integrations!

• A range of approximate Kalman Filters has been developed for use with large-
dimensional systems.

• All of these methods rely on some form of low-rank approximation of the state 
covariance matrices.



Kalman Filters for large dimensional systems

• Let us assume that Pa/b has rank M<<N (e.g. M≈100). (rank=dim. of vector space 
spanned by its columns/rows)

• In this case we can write Pb=	Xb(Xb)T, where Xbk is N x M. This decomposition also 
assures us that the resulting Pb is positive semi definite. Xb is a thin matrix!

• The Kalman Gain then becomes: 

K=	Pb HT(HPbHT+	R)-1	=	

Xb(Xb)THT(H	Xb(Xb)T HT+	R)-1	=

Xb (HXb)T(H	Xb(HXb)T+	R)-1

• Note that, to evaluate K, we apply H to the M columns of Xb rather than to the N
columns of Pb!

• The N x N matrices Pa/bhave been eliminated from the computation! In their place 
we have to deal with thin N x M (Xb) matrices in state space and their observation 
space projections HXb matrices which have dimension L x M (L = number of 
observations)



Kalman Filters for large dimensional systems

• The approximated KF described above is called Reduced-Rank Kalman Filter (RRKF)

• Unsurprisingly, there is a price to pay for this huge reduction in computational cost

• The analysis increment is a linear combination of the columns of Xb:

xa - xb =	K (y – H(xb))	=	Xb (HXb)T ((HXb)(HXb)T+	R)-1	(y – H(xb))

• The whole blue part of the equation computes to a vector of size M (ie, the number 
of columns of Xb ,	which	is	the	rank of Pb)! 

• The analysis increments are thus formed as a linear combination of the columns of 
Xb: they are confined to the column subspace of Xb, which has at most rank M << N.

• This severe reduction in rank of Pa/b has two main effects:

1. There are only M (~100) degrees of freedom available to fit the O(107) 
observations available during the analysis window: the analysis will smooth 
out local detail;

2. The low-rank approximations of the covariance matrices suffer from spurious 
long-distance correlations and cross-correlations. 



Kalman Filters for large dimensional systems

• Localization of the analysis update is the standard solution to the rank 
deficiency/sampling noise problem. It comes in two main flavours:

1. Domain localization (also called “Observation space localization”, Houtekamer 
and Mitchell, 1998; Ott et al. 2004);

• Domain localization solves the analysis equations independently for each grid point, or 
for each of a set of regions covering the domain (very good for parallelisation!)

• Each analysis uses only observations that are local to the grid point (or region) and the 
observations are usually weighted according to their distance from the analysed grid 
point (e.g., Hunt et al., 2007)

• This guarantees that the analysis at each grid point (or region/column) is not influenced 
by distant observations (-> noisy grid point – obs correlations are suppressed) 

• The method acts to vastly increase the dimension of the sub-space in which the analysis 
increment is constructed because each grid point (region/column) is updated by a 
different linear combination of ensemble perturbations

• However, performing independent analyses for each region can lead to a) reduced skill 
in the analysis of the large scales and b) in producing balanced analyses.



Kalman Filters for large dimensional systems

Domain localization (e.g. Houtekamer and Mitchell, 1998; Ott et al.
2004, Hunt et al., 2007);

Analysed grid point

Local observations



Kalman Filters for large dimensional systems

2. Covariance localization  (also called “Model space localization”, Houtekamer and 
Mitchell, 2001). 

• Covariance localization is performed by element wise (Schur) multiplication of the error 
covariance matrices with a predefined correlation matrix representing a decaying 
function of distance (vertical and/or horizontal).

Pb -->		ρL		° Pb

• In this way spurious long-range correlations in Pb are suppressed. ρL is often called a 
“moderation function”

• As for domain localization, the method acts to vastly increase the dimension of the sub-
space in which the analysis increment is constructed.

• Choosing the product function is non-trivial and largely heuristic. It is easy to modify Pb
in undesirable ways. In particular, physical balance relationships (e.g. geostrophy) may 
be adversely affected and long-distance correlations will be ignored. 

• In order to suppress sampling noise some of the information content of the 
observations is always lost



Kalman Filters for large dimensional systems

Miyoshi et al., 2014 



Random sampling of 
vertical background 
error correlation 
matrix for different 
ensemble sizes.

Note how sampling noise 
decreases slowly with 
ensemble size O(M1/2)
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=

• Standard Error of sample correlation ≈ (1-ρ2)/√(Nens-1)	
• For small ρ,	Nens SE becomes ~ ρ (e.g. ρ=0.1, Nens=40 => stderr(ρ)≈0.16) 
• Since ρ	becomes small for large horiz./vert. distances, we apply distance 

based covariance localization on the sample Pf

Pfsampled ρL = Pflocal



Kalman Filters for large dimensional systems

• Domain/Covariance localization  is a practical requirement for using the KF in large 
dimensional applications

• Finding the right amount of localization is an (expensive) tuning exercise: a good 
trade-off needs to be found between computational effort, controlling sampling 
error and not losing observational information

• Finding the “optimal” localization scales as functions of the system characteristics 
is an area of active research (e.g., Flowerdew, 2015; Periáñez et al., 2014; 
Menetrier et al., 2014; Bishop, 2017) 

• Recent ideas on how to combine domain and covariance localisation will also play 
a role (eg, domain loc. in the horizontal, covariance loc. in the vertical, Farchi and 
Bocquet, 2019)



Ensemble Kalman Filters

• Ensemble Kalman Filters (EnKF, Evensen, 1994; Houtekamer and Mitchell, 1998; 
Burgers et al., 1998, Houtekamer and Zhang, 2016) are Monte Carlo 
implementations of the reduced rank KF

• In EnKF error covariances are constructed as sample covariances from an 
ensemble of background/analysis fields, of size M<<N:

Pb =	 <
=><

Σm(xbm- <xbm>)	(xbm- <xbm>)T	=

= Xb(Xb)T

• Xb is the N x M matrix of normalised background perturbations, i.e.:

Xb =	 <
=><

((xb1- <xb>),	(xb2- <xb>),	..,	(xbM- <xb>))

• Note that the full covariance matrix is never formed explicitly: The error 
covariances are usually computed locally for each grid point (or column) in the M x 
M ensemble space 



Ensemble Kalman Filters

• In the standard KF the error covariances are explicitly computed and propagated in 
time using the tangent linear and adjoint of the model and observation operators, 
i.e.: 

K=	Pb HT(HPbHT+	R)-1	

Pb=	MPaMT+	Q

• In the EnKF the error covariances are sampled from the ensemble forecasts
(𝑀 𝑥? ) and their observation equivalents (𝐻 𝑀 𝑥? ) and the huge matrix Pb is 
never explicitly formed:

PbHT=	Xb(Xb)THT=	Xb(HXb)T ≈
<

=><
Σm(xbm- <xbm>)	(Hxbm- <H(xbm)>)T

HPbHT=	HXb(HXb)T ≈
<

=><
Σm(Hxbm- <H(xbm)>)	(Hxbm- <H(xbm)>)T

• Not having to code and maintain TL and ADJ operators is a distinct advantage!



Ensemble Kalman Filters

• In the EnKF the error covariances are sampled from the ensemble 
forecasts. They reflect uncertainties in the state of the atmospheric flow

Standard deviation of surface pressure background t+6h fcst (shaded, Pa)
Z1000 background  t+6h fcst (black isolines)



Ensemble Kalman Filters

• The Ensemble Kalman Filter is a Monte Carlo technique: it requires us to generate 
a sample {xbm;	m=1,..,M} drawn from the pdf of background error: how to do this?

• We can generate this from a sample {xat-1,m;	m=1,..,M} of the pdf of analysis error 
for the previous cycle: 

xbt,m=	M(xat-1,m) + ηm

where ηm	is a sample drawn from the pdf of model error.

• This shifts the problem to: How do we generate a sample from the analysis pdf? 
Let us look at the analysis update again:

xa=	xb +	K (y – H(xb))	=	(I-KH) xb +	Ky

• If we subtract the true state x* from both sides (and assume y*=Hx*)

ea=	(I-KH) eb +	Keo

• i.e., the errors have the same update equation as the state 



Ensemble Kalman Filters

• Consider now an ensemble of analysis where all the inputs to the analysis (i.e., the 
background forecast and the observations) have been perturbed according to their 
errors:

xa’	= (I-KH) xb’	+	Ky’

• If we subtract the unperturbed analysis xa=	(I-KH) xb+	Ky

εa=	(I-KH) εb+	Kεo

• Note that the observations (during the update step) and the model (during the forecast 
step) are perturbed explicitly (i.e., we add random numbers with prescribed statistics).

• The background is implicitly perturbed , i.e.:

xbt,m=	M(xat-1,m)	+	ηm

• Hence, one way to generate a sample drawn from the pdf of analysis error is to perturb 
the observations and the model with perturbations drawn from their error covariances.

• The EnKF based on this idea is called Perturbed Observations (Stochastic) EnKF
(Houtekamer and Mitchell, 1998). It is also the basis of ECMWF EDA (more on this later)



Ensemble Kalman Filters

• Another way to construct the analysis sample without perturbing the observations (but 
still perturb the model!) is to make a linear combination of the background sample:

Xa=XbT

where T is a linear transformation (M	x	M)	chosen so that it produces the correct analysis        
covariance when applied to Xb: 

Xa(Xa)T	=	(XbT)	(XbT)T =	Pa =	(I-KH)Pb

• Note that the choice of T is not unique: Any orthonormal transformation Q
(QQT=QTQ=I) can be applied to T and give another valid analysis sample

• Implementations also differ on the treatment of observations (i.e., local patches, one at a 
time)

• Consequently there are a number of different, functionally equivalent, implementations
of the Deterministic EnKF (ETKF, Bishop et al., 2001; LETKF, Ott et al., 2004, Hunt et al., 
2007; EnSRF, Whitaker and Hamill, 2002; EAF, Anderson, 2001;…)



Ensemble Kalman Filters

• We might want to ask the questions: 

1. How good is the EnKF for state estimation?

2. How does it compare with 4D-Var?



Ensemble Kalman Filters

• We might want to ask the questions: 

1. How good is the EnKF for state estimation?

2. How does it compare with 4D-Var?

• The short answer: it depends… 

(more detailed answers in Hamrud et al, 2015; Bonavita et al, 2015; Bonavita et al, 2020)



Ensemble Kalman Filters

• For sparsely observed systems the EnKF works quite well: 

N.Hem. 500 hPa AC
4DVar Surface Pressure obs.
EnKF Surface Pressure obs.



Ensemble Kalman Filters

• For densely observed systems the EnKF works not quite as well as 4D-Var: 

N.Hem. 500 hPa AC
4DVar All observations
EnKF All observations



Ensemble Kalman Filters

• Advantages:

1. Background/Analysis error estimates reflect state of the flow

2. Provides an ensemble of analyses: can use to directly initialise ensemble 
prediction

3. Competitive with 4D-Var for sparsely observed systems (eg early period 
reanalysis, Ocean/Land DA, etc.)  

4. Excellent scalability properties

5. Relative ease of coding and maintenance (No TL and ADJ models!)



Ensemble Kalman Filters

• Disadvantages:

1. The affordable ensembles are relatively small (O(100)), thus sampling noise 
and rank deficiency of the sampled error covariances become a performance 
limiting factor for the EnKF (Stop the press! ML models are very cheap to 
run, could make order of magnitudes larger ensemble possible…)

2. Careful localization of sampled covariances becomes necessary: This is an 
on-going research topic for both EnKF and Ensemble Variational systems. 
Note that localisation reduces amount of information that can be extracted 
from observations

3. Vertical covariance localization becomes conceptually and practically more 
difficult for observations (e.g., satellite radiances) which are non-local, i.e. 
they sample a layer of the atmosphere (Campbell et al., 2010). 



Ensemble Kalman Filters

• It is more effective (and mathematically 
consistent) to do model space localisation  in 
the vertical for nonlocal observations like those 
from satellite sounders (Campbell et al., 2010). 

• Model space localisation can be implemented 
also in LETKF type of EnKF, using an expanded
ensemble in the analysis step (“modulated
ensemble”. Whitaker, 2016, Bishop et al., 
2017). This is more computationally expensive 
(larger ensemble) but the additional cost can 
be absorbed by updating the whole vertical 
column at once  

• Further details in Lei et al, 2018 and references 
therein; Farchi and Bocquet, 2019 

from Campbell et al., 2010 



Ensemble Kalman Filters

• Minuses:

4. EnKF produces linear analysis updates. However high-resolution models and 
new cloud/precip. sensitive observations (e.g., rain radar, cloud/rain affected 
radiances, etc) are increasingly nonlinear. What to do?

1. Iterate the analysis, similar to what incremental 4D-Var does (e.g., Iterative EnKF, Sakov, 
2012; Sakov et al., 2018). Conceptually easy but computationally expensive;

2. Extend the Gaussian framework of the EnKF to classes of non-Gaussian pdfs. This can be 
done in a variety of ways, e.g. Gaussian Mixture models (Andersson and Andersson, 1999; 
Bengtsson et al. 2003; Hoteit et al. 2008, 2012; Stordal et al. 2011; Frei and Künsch, 2013), 
GIGGS Filter (Bishop, 2016); expansion to higher orders in the innovations (Hodyss, 2011);

3. A combination of 1 and 2 (e.g., Posselt and Bishop, 2018);

4. Rank Histogram Filters (Andersson, 2010, 2020; Metref et al, 2014) 

5. Employ some combination/hybrid of EnKF and Particle Filter (see for example: Van Leeuwen, 
Y. Cheng and S. Reich, 2015; Carrassi et al, 2017; Google this for even more recent results!) 

6. Let the EnKF give up gracefully in presence of increasing nonlinearity (Bonavita, Geer and 
Hamrud, 2020)

7. Increase frequency of analysis updates (6h->3h->1h->…)



Ensemble Kalman Filters in hybrid DA

• While the pure EnKF is not currently competitive with variational methods for 
state estimation in global NWP, its good scalability properties and ease of 
maintenance make it a popular choice as a Monte Carlo system to estimate and 
cycle the error covariances (Pa/b) needed in a variational analysis system and to 
initialise an ensemble prediction system: hybrid Variational-EnKF analysis systems 
(NCEP, CMC, UKMO, JMA)
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• For linear model M and the observation operators H the Kalman Filter produces an 
optimal (minimum error variance) sequence of analyses (xa1, xa2, …, xat-1,	xat)

• Under the additional assumption of Gaussian errors the Kalman Filter provides  the 
exact posterior probability estimate, p(xat| xb0;	y0,y1,…,yt). 

• Kalman Filters are impractical for large-dimensional systems like in NWP, due to the 
impossibility of storing and evolving the state error covariance matrices (Pa/b)

• We need to use reduced-rank representations of the state error covariance matrices: 
this can be done, but has other drawbacks (need for localisation, physical 
imbalances, etc.)

• The Ensemble Kalman Filter is a Monte Carlo implementation of the reduced-rank 
Kalman Filter. It works well for sparsely observed systems, but for well observed 
systems the severe rank reduction can be a performance limiting factor

• The EnKF (and its variants) are currently used in many global NWP Centres as the 
error cycling component of a hybrid Variational-EnKF system 

Summary
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