Data assimilation and machine learning

Alan Geer

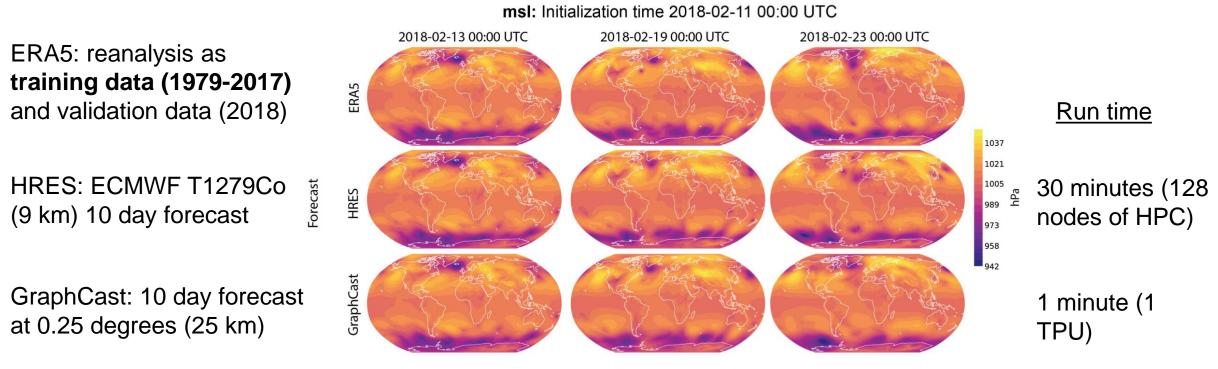
European Centre for Medium-range Weather Forecasts alan.geer@ecmwf.int

ECMWF data assimilation training course, March 7, 2024

Thanks to: Matthew Chantry, Marcin Chrust, Massimo Bonavita, Sam Hatfield, Patricia de Rosnay, Peter Dueben

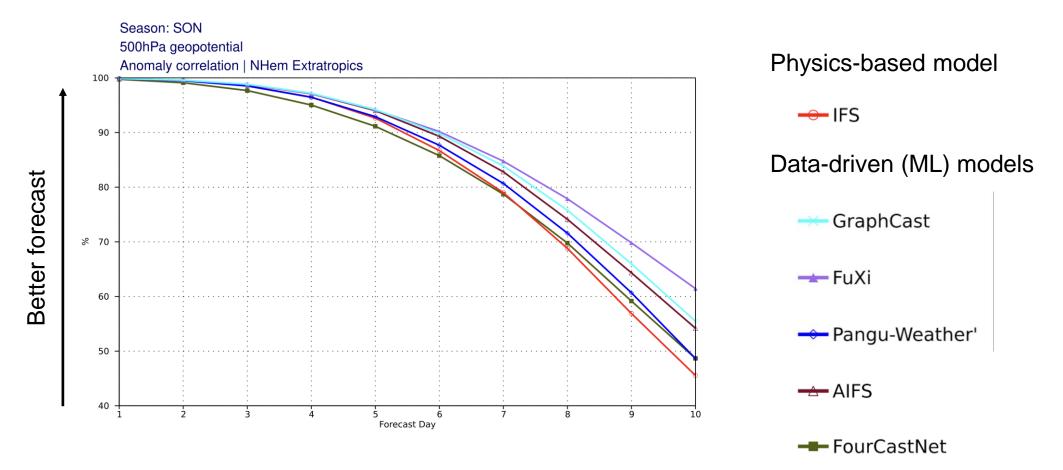
Forecast models based on machine learning are here and they're good!

- Huawei's Pangu-Weather (Bi et al., 2022, arXiv preprint arXiv:2211.02556)
- Google DeepMind's GraphCast (Lam et al., 2022, arXiv preprint arXiv:2212.12794)



https://arxiv.org/pdf/2212.12794.pdf

Machine learning weather forecasts out-perform* physics-based models



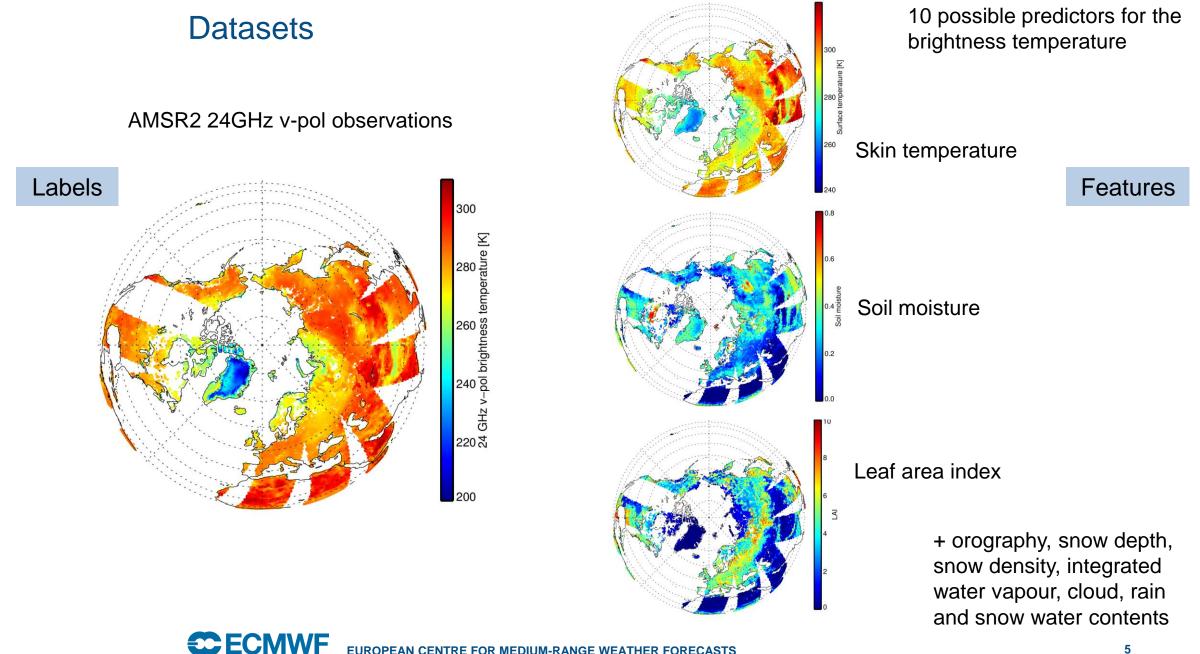
ECMWF charts catalogue - experimental: machine learning models

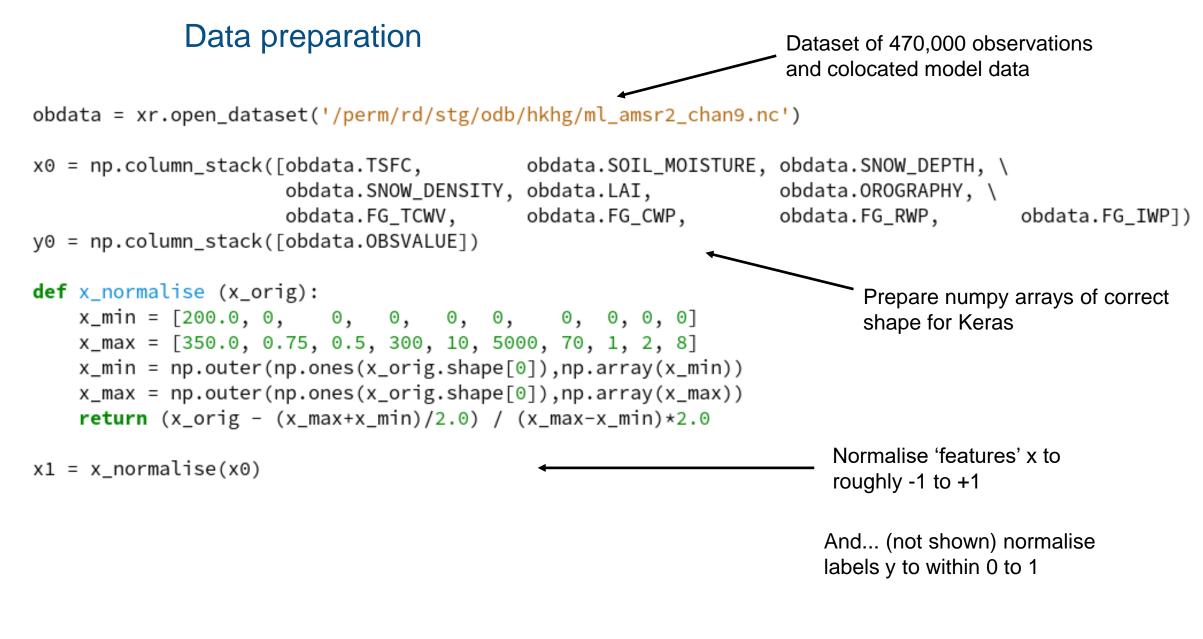
Ben-Bouallegue et al. (2023) The rise of data-driven weather forecasting - <u>https://doi.org/10.48550/arXiv.2307.10128</u> Bi et al. (2023) Accurate medium-range global weather forecasting with 3D neural networks - <u>https://doi.org/10.1038/s41586-023-06185-3</u> Lam et al. (2023) Learning skilful medium-range global weather forecasting - <u>https://doi.org/10.1126/science.adi2336</u>

An ML example: microwave land surface observation operator

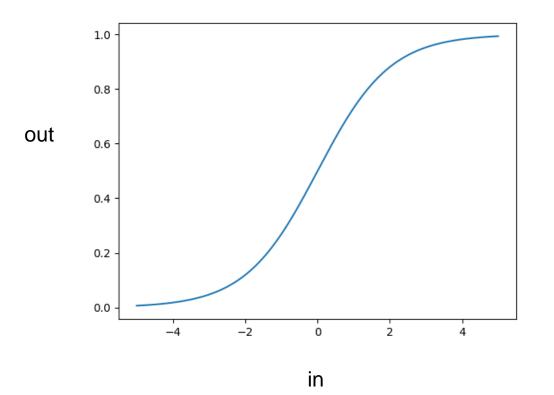
Python, Keras, Tensorflow, Numpy, Matplotlib, Xarray

© ECMWF March 8, 2024



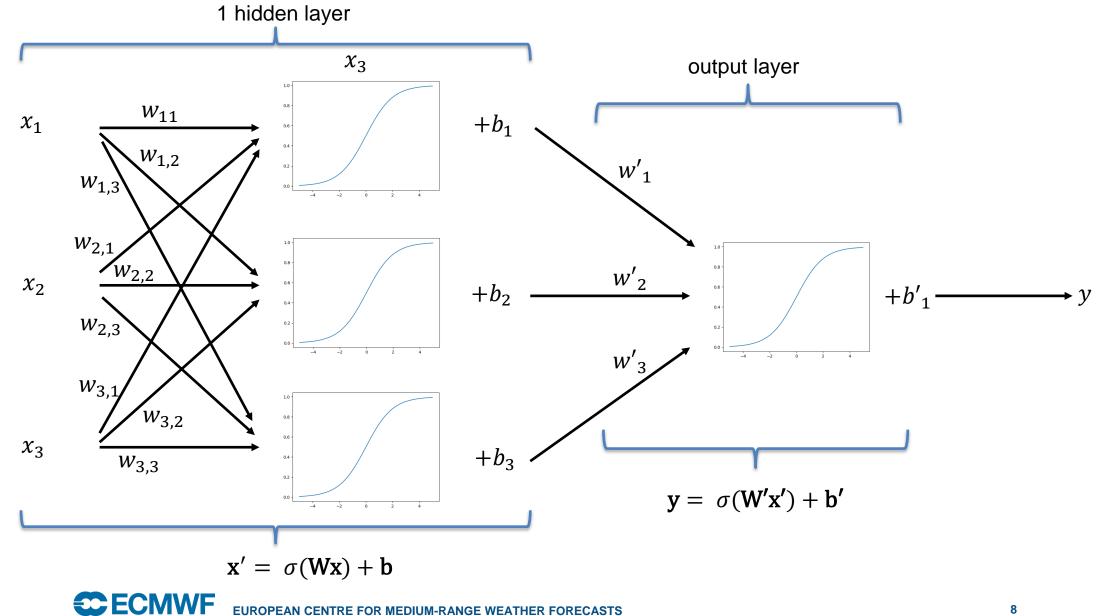


Sigmoid activation function $\sigma()$



b=np.arange(-5,5,0.01)
plt.plot(b,1/(1+np.exp(-b)))

Feedforward neural network - example



EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

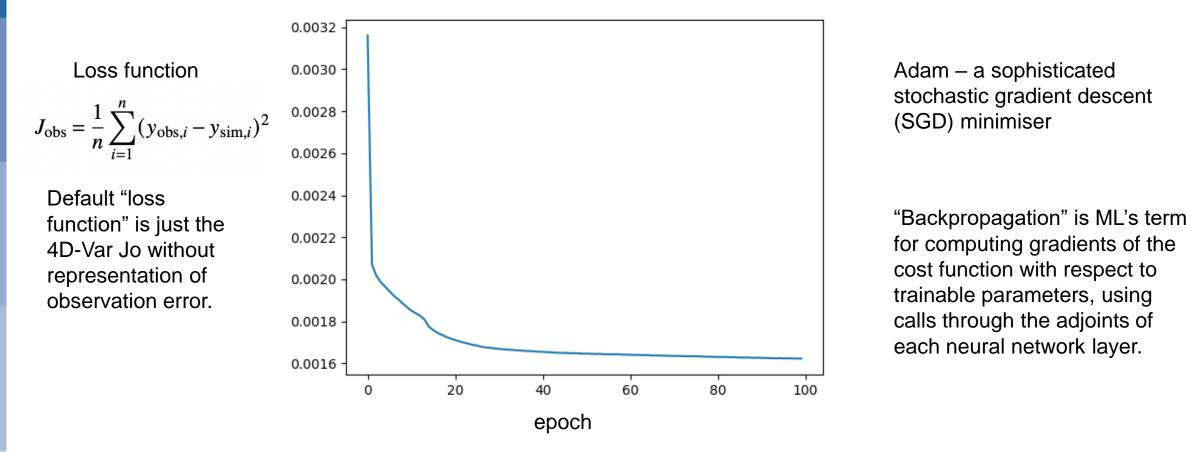
Set up a neural network for the land surface observation operator

```
In [21]: model = Sequential()
    ...: model.add(Dense(units=10, activation='sigmoid',input_dim=10))
    ...: model.add(Dense(units=6, activation='sigmoid'))
    ...: model.add(Dense(units=1, activation='sigmoid'))
    ...: model.summary()
    ...:
    model.compile(loss='mean_squared_error', optimizer='adam')
    ...:
Model: "sequential_2"
```

Layer (type)	Output Shape	Param #
dense_4 (Dense)	(None, 10)	110
dense_5 (Dense)	(None, 6)	66
dense_6 (Dense)	(None, 1)	7
Total params: 183 Trainable params: 183 Non-trainable params: 0		

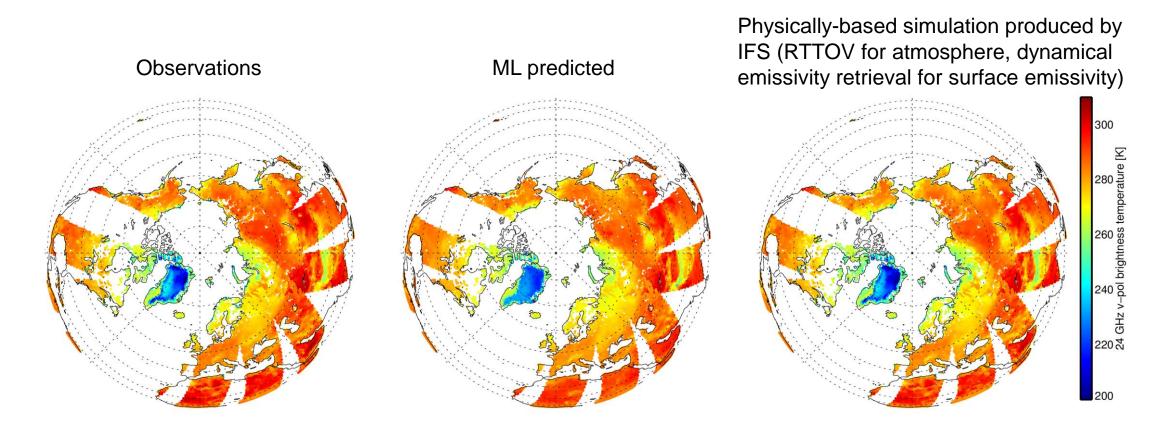
Train it (about 25 minutes on a linux workstation)

history = model.fit(x1, y1, epochs=100)



~Variational data assimilation without error representations, without regularisation, without state update

Results (ability to fit training dataset)



predict = y_unnormalise(model.predict(x1))

Hand-written function to recover TB

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

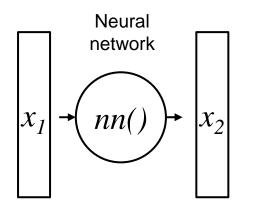
Problems with this toy NN model for 24 GHz radiances

- It's not as good as the current physical methods
- The input variables are not sufficient to drive the outputs
 - Missing variables e.g. over Greenland, detailed knowledge of snow and ice microstructure
- One of the driving problems for all-surface data assimilation:
 - Neither the models nor the input state are fully known
 - Chicken and egg problem: can't train the model if you don't know the necessary inputs well enough

Types of ML

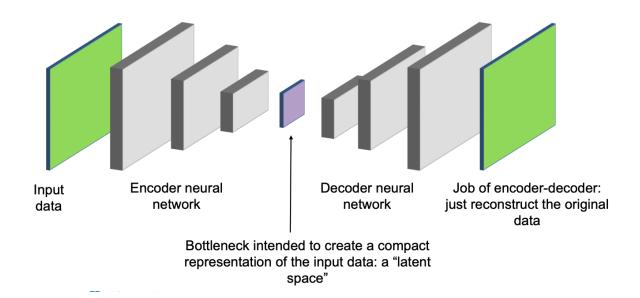
© ECMWF March 8, 2024

Types of ML – supervised learning



Supervised learning:

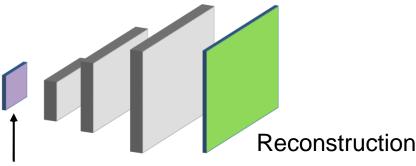
- ML as a "universal function approximator" (Hornik, 1991)
- Both inputs x1 and outputs x2 need to be provided as training data
- An "emulator" / "surrogate" / "empirical model"



Encoder-decoder:

- Data compression
- Data assimilation in the space of an autoencoder (Peyron et al., 2021)
- Still needs both inputs and outputs to train the model

Types of ML – unsupervised learning – generative ML



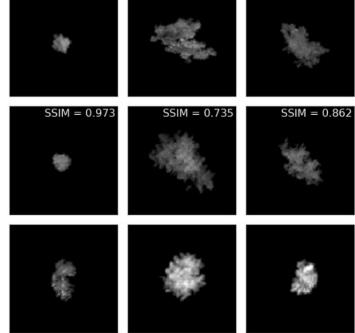
Latent space: a reduced statistical description of a phenomemon

A bit like a set of eigenvalues in a principal component decomposition

Reconstructed

Real

Random vector in latent space



What if we could just have the decoder?

- How do we train it?
 - We could train an encoder-decoder on something, and then throw away the encoder.
 - Or find some more clever way...

Snowflake images from Leinonen and Berne

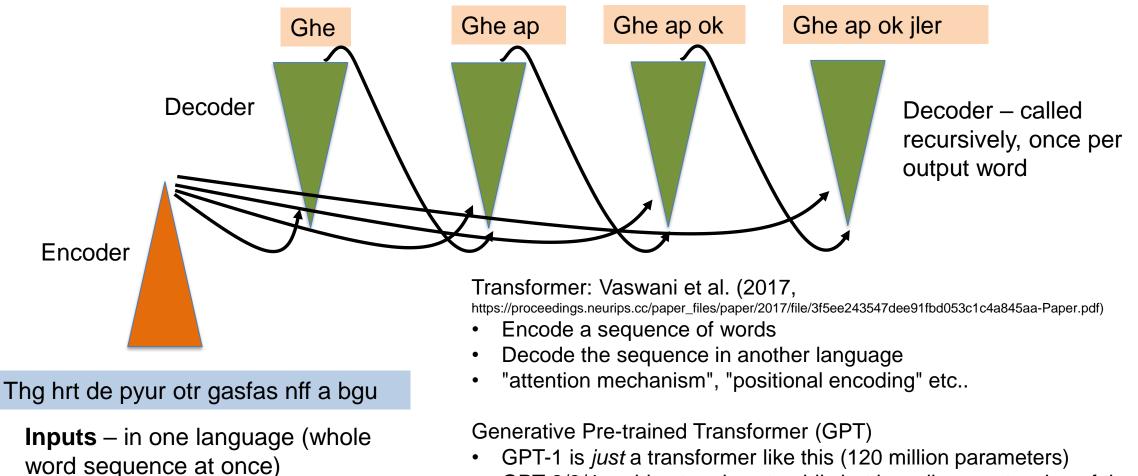
(2021, <u>https://doi.org/10.5194/amt-13-</u> 2949-2020)

Generative Adversarial Network (GAN):

- Generator (~decoder): make an image
- Discriminator (~encoder): given an image, tell if it is real or fake -> drives the loss function

Generative ML - transformers

Outputs – translate to another language (original google application) – or continue in same language (GPT-1)



• GPT-2/3/4 architecture is not public but broadly an extension of these concepts (parameters: v3: 175 billion, v4: 1000 billion???)

CECMWF

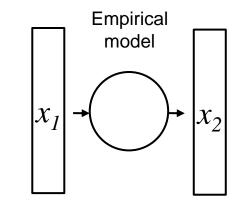
EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

How ML can benefit DA

© ECMWF March 8, 2024

What does ML bring for data assimilation? 1) surrogate modelling

- Train against existing datasets, typically an existing physical model
- Acceleration:
 - E.g. use many more ensemble members, allowing previously unaffordable data assimilation algorithms (Chattopadhyay et al., 2021, GMDD, <u>https://doi.org/10.5194/gmd-2021-71</u>, generate a 1000-member ensemble)
 - E.g. generate samples of model error from which to derive a model error covariance matrix: Bonavita and Laloyaux, 2022 (<u>https://arxiv.org/abs/2209.11510</u>)
- Space compression:
 - E.g. data assimilation in the latent space of an auto encoder (Peyron et al., 2021, Latent space data assimilation by using deep learning <u>https://arxiv.org/abs/2104.00430</u>)
- Numerical differentiation:
 - E.g. provide a tangent linear and adjoint for variational data assimilation: Gravity wave drag scheme emulated by ML and then ML used to provide TL/adjoint: Hatfield, Chantry et al., 2021(<u>https://doi.org/10.1029/2021MS002521</u>)



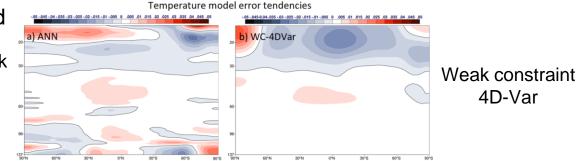
Known states

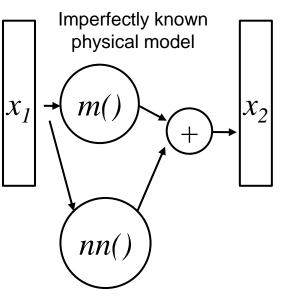
What does ML bring for data assimilation? 2) bias correction

Correct model or observation error:

- Review: Farchi et al. (2021) https://doi.org/10.1016/j.jocs.2021.101468
- Train against historical data assimilation increments or departures
- It is possible to train "online" inside a data assimilation system
 - Separate, iterative approach (e.g. Brajard et al., 2020, <u>https://doi.org/10.1016/j.jocs.2020.101171</u>)
 - Online training inside variational data assimilation is in development
- A nonlinear extension to existing data assimilation bias correction methods
 - Weak constraint data assimilation
 - Parameter estimation
 - Variational bias correction (VarBC)
- Example: model error correction in IFS, Bonavita and (<u>https://doi.org/10.1029/2020MS002232</u>)

Neural network estimate of model bias





Neural network to correct model error

What does ML bring for data assimilation? 3) replace entire DA system

The analysis equation

(model space)

$$\mathbf{x}_{a} = \mathbf{x}_{b} + \mathbf{K}(\mathbf{y} - H\mathbf{x}_{b})$$

$$\delta \mathbf{x}_{a} = \mathbf{K} \delta \mathbf{y} \quad \text{(observation space)}$$

$$\mathbf{y} + \mathbf{E}_{\text{model}} + \mathbf{\delta} \mathbf{x}_{a}$$

 \mathbf{x}_a - analysis vector \mathbf{x}_b - background vector \mathbf{y} - observation vector $H(\mathbf{x}_b)$ - forward observation operator \mathbf{H} - Jacobian or tangent linear approximation of H \mathbf{R} - observation error covariance \mathbf{B} - background error covariance $\mathbf{K} = \mathbf{B}\mathbf{H}^T (\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R})^{-1}$ Kalman gain matrix $\delta \mathbf{y} = \mathbf{y} - H\mathbf{x}_b$ is the innovation vector $\delta \mathbf{x}_a = \mathbf{x}_a - \mathbf{x}_b$ is the analysis increment

- Train an ML model to do the DA step e.g. take innovations δy and produce increments δx_a
 - Cintra et al. (2016, Tracking the model: Data assimilation by artificial neural network. In 2016 International Joint Conference on Neural Networks (IJCNN) (pp. 403-410))
 - Arcucci et al. (2021, https://doi.org/10.3390/app11031114)
- Problems:
 - Most work so far has been done on simple test systems (e.g. Lorenz '63)
 - Real DA uses H() operator to map diversely in space, time and to observable variables (e.g. observation space)
 - How do we adapt to new observation types? How much training (and retraining) is needed?

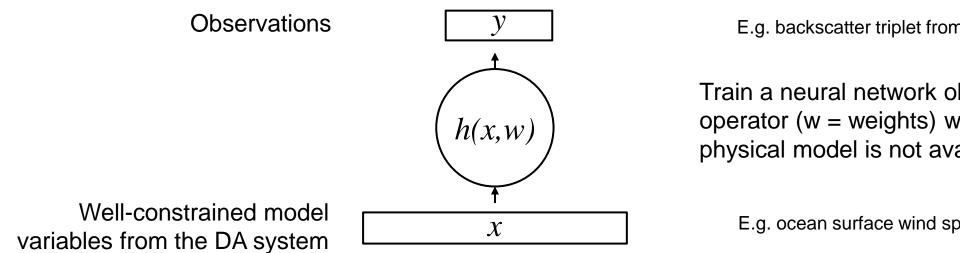
CECMWF

What does ML bring for data assimilation? 4) learn new models

Learn new models directly from observations, where physical models do not exist or are not good enough:

- If we train an ML forecasting model against analysis, it learns to map analyses (the combination of forecast and observations) not forecast state to forecast state (if training to a physical forecast model)
 - ML forecasting models like Pangu-Weather or Graphcast may already be encoding some "new physics" – at minimum, online bias corrections
- Train against high resolution models (e.g. train moist physics scheme for a GCM against a convection resolving model)
- Train directly against observations?
 - Irregular and indirect link to observation space makes this hard
 - Solution? Train empirical components inside a physical DA system

What does ML bring for data assimilation? 5) new observation operators

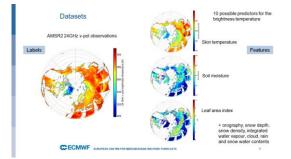


Example: land surface radiances at microwave frequencies ٠

E.g. backscatter triplet from scatterometer

Train a neural network observation operator (w = weights) where a physical model is not available

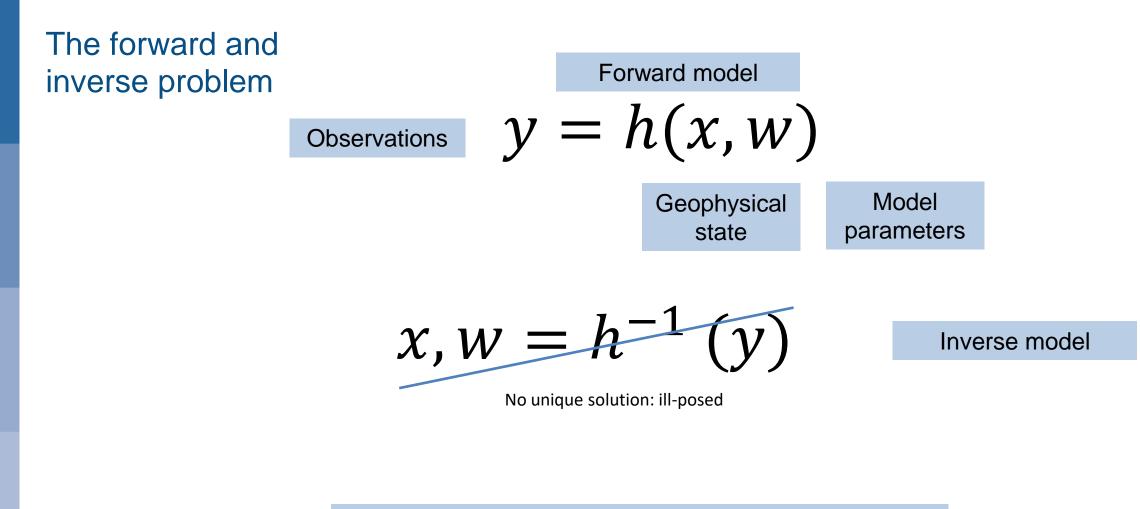
E.g. ocean surface wind speed



Example (in retrieval direction) operationally used at ECMWF for soil moisture assimilation ٠ from SMOS: Rodriguez-Fernandez et al., 2019, "SMOS Neural Network Soil Moisture Data Assimilation in a Land Surface Model and Atmospheric Impact", <u>https://www.mdpi.com/2072-4292/11/11/1334</u>

Theoretical links between ML and DA

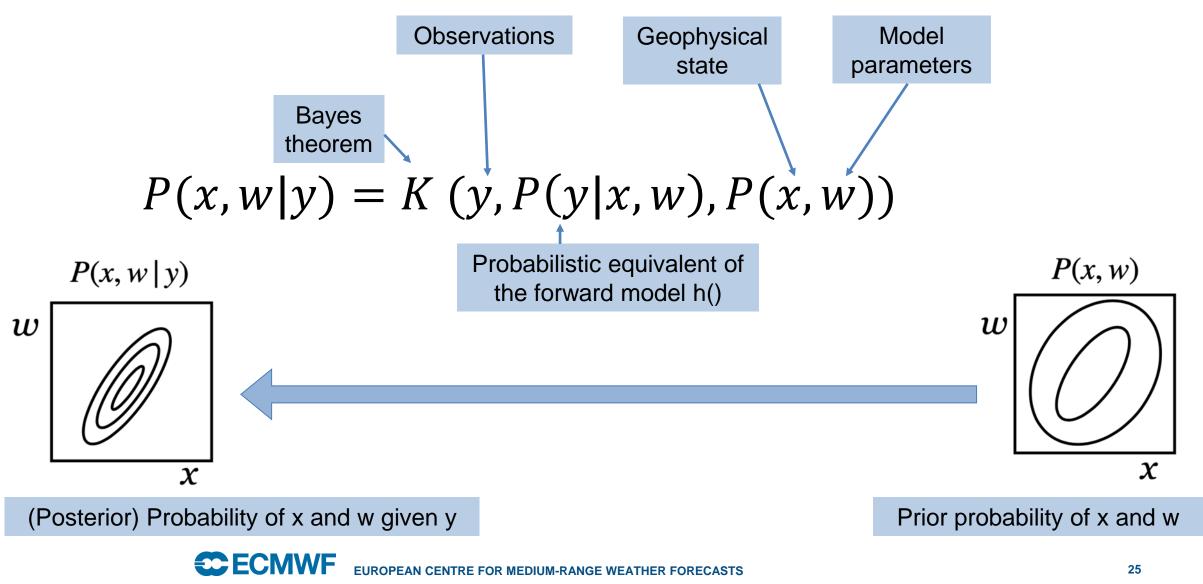
© ECMWF March 8, 2024



The best that observations can do is to provide a statistical improvement in our knowledge of x and w

The inverse problem solved by Bayes theorem

as the first lecture of this DA course, but extended with state AND parameters



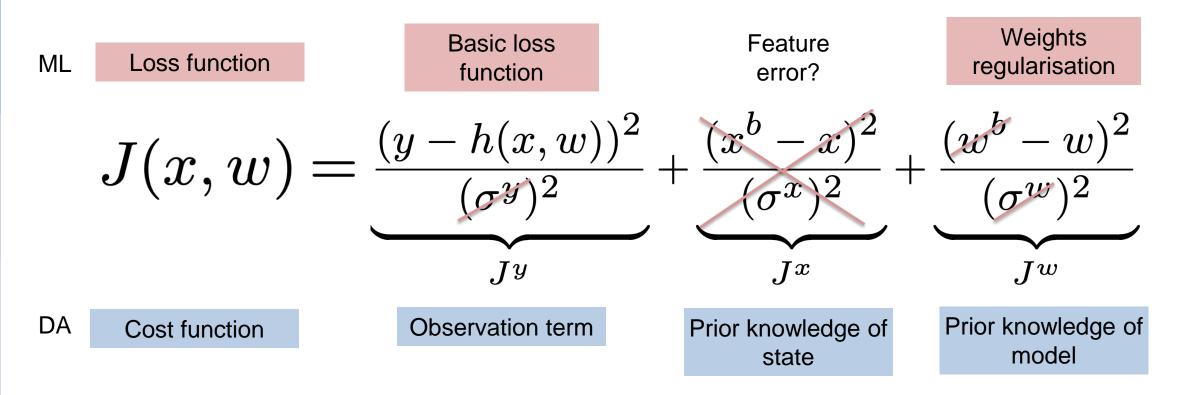
Cost function for variational DA

Assume Gaussian errors (error standard deviation σ) and for clarity here simplify to scalar variables and ignore any covariance between observation, model or state error



Cost / loss function equivalence of ML and variational DA

Assume Gaussian errors (error standard deviation σ) and for clarity here simplify to scalar variables and ignore any covariance between observation, model or state error

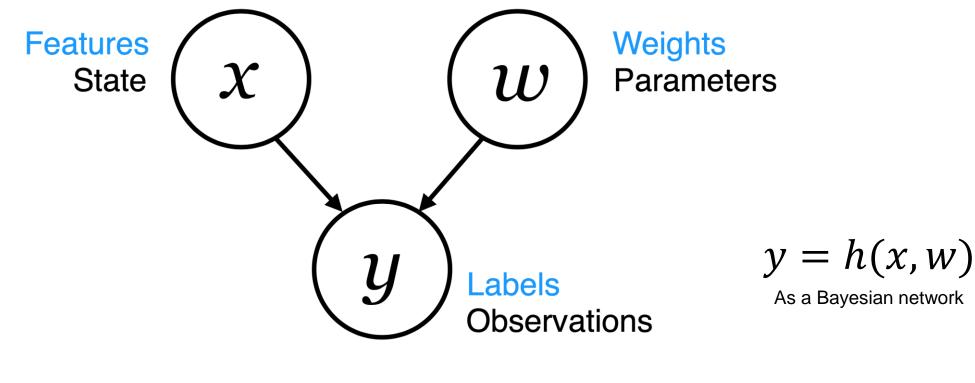


Machine learning (e.g. NN)

Variational data assimilation

Labels	У	Observations	y ^o	
Features	Х	State	X	
Neural network or other learned models	$\mathbf{y}' = W(\mathbf{x})$	Physical forward model	y = H(x)	
Objective or loss function	$(y - y')^2$	Cost function	$J = J^{b} + (y^{o} - H(x))^{T} R^{-1} (y^{o} - H(x))$	
Regularisation	w	Background term	$J^{b} = \left(\mathbf{x} - \mathbf{x}^{b}\right)^{T} \mathbf{B}^{-1} \left(\mathbf{x} - \mathbf{x}^{b}\right)$	
Iterative gradient descent		Conjugate gradient method (e.g.)		
Back propagation		Adjoint model	$\frac{\partial J}{\partial \mathbf{x}} = \mathbf{H}^T \frac{\partial J}{\partial \mathbf{y}}$	
Train model and then apply it		Optimise state in an update-forecast cycle		
Boukabara et al. (2021) https://doi.org/10.1175/BAMS-D-20-0031.1				
	EUROPEAN CENTRE FOR MEI	DIUM-RANGE WEATHER FORECASTS	28	

Bayesian equivalence of ML and DA

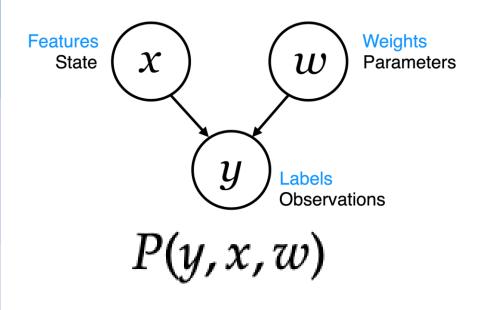


- Geer (2021)
- https://doi.org/10.1098/rsta.2020.0089
- Bocquet et al. (2020)
- Abarbanel et al. (2018)
- Hsieh and Tang (1998)
- Goodfellow et al. (2016)
- https://arxiv.org/abs/2001.06270
- https://doi.org/10.1162/neco_a_01094
- https://doi.org/10.1175/1520-0477(1998)079%3C1855:ANNMTP%3E2.0.CO;2
- https://www.deeplearningbook.org

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Bayesian networks: representing the factorisation of joint probability distributions

1. Factorise in two different ways using the chain rule of probability



$$P(y, x, w) = P(x|w, y)P(w|y)P(y)$$
$$P(y, x, w) = P(y|x, w)P(x|w)P(w)$$

2. Equate the two right hand sides and rewrite

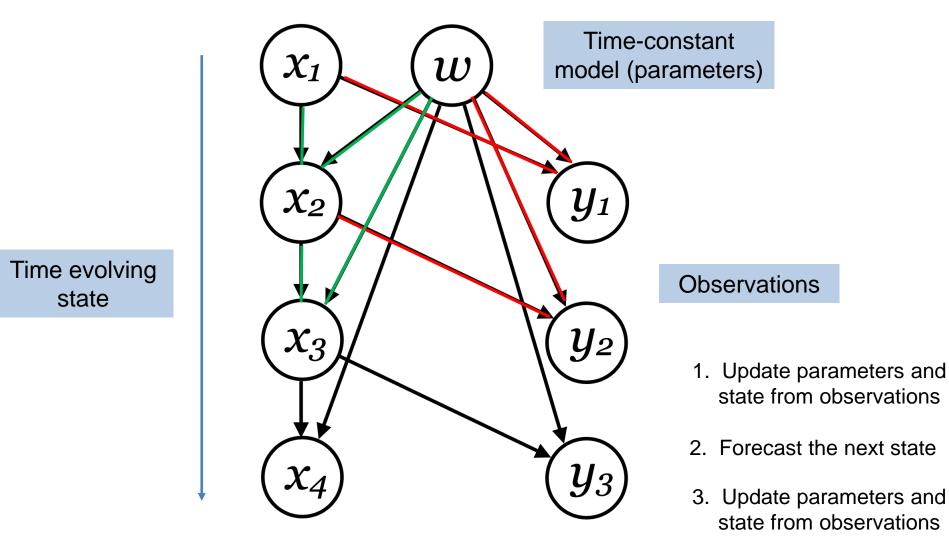
$$P(x|w, y)P(w|y) = \frac{P(y|x, w)P(x|w)P(w)}{P(y)}$$

3. Rewrite by putting back the joint distributions of x,w: Bayes' rule

$$P(x, w|y) = \frac{P(y|x, w)P(x, w)}{P(y)}$$

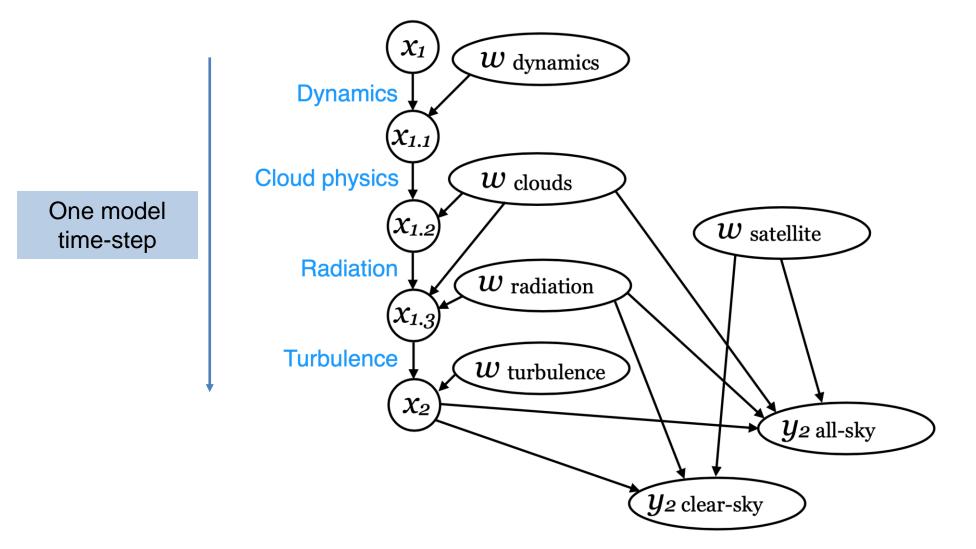
ECMVID ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Time evolution of state – cycled data asimilation

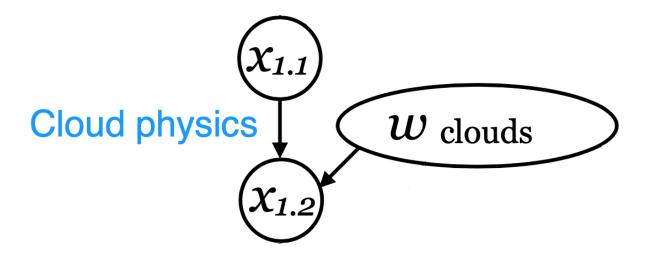


4. Forecast ...

Inside an atmospheric model & data assimilation timestep

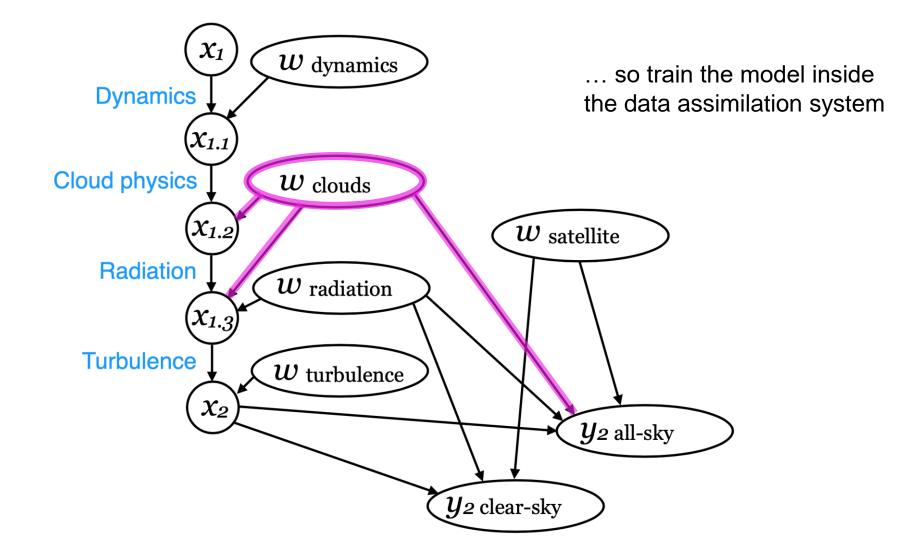


Learning an improved model of cloud physics (ML or DA)



We want to train a model against observations, but we cannot directly observe gridded intermediate states $x_{1.1}$ and $x_{1.2}$... or more precisely model tendencies ...

Inside an atmospheric model

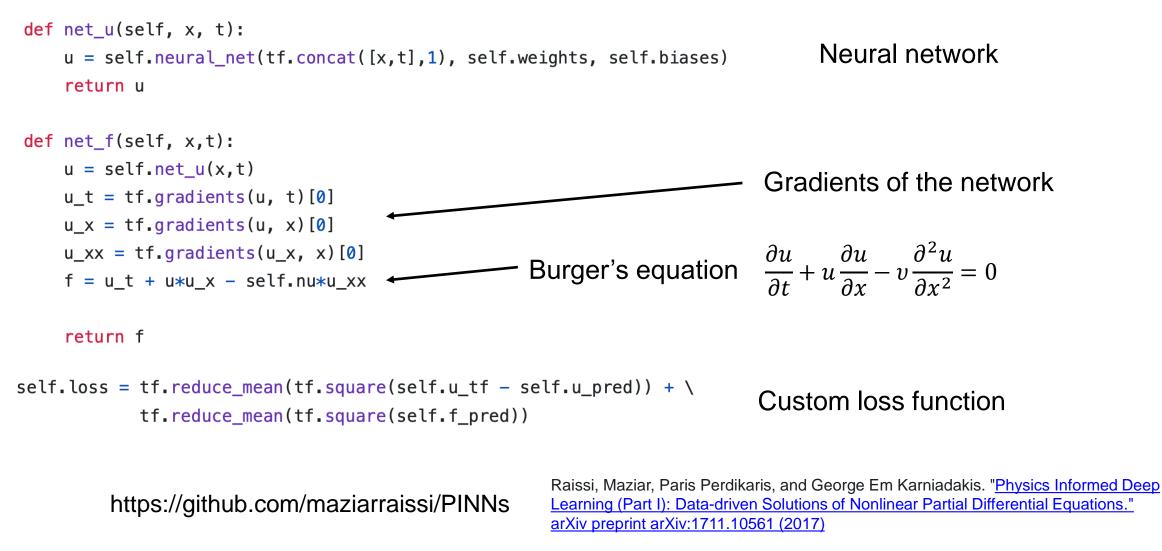


Current issues and ideas combining machine learning and DA / physics

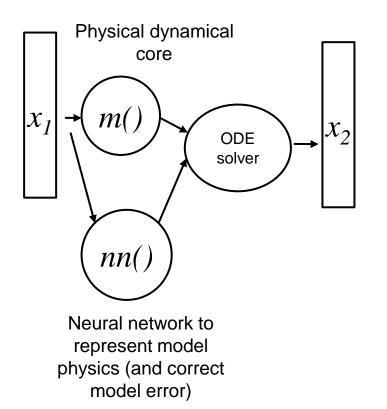
A few highlights from a rapidly developing new field

© ECMWF March 8, 2024

Combine physical and empirical models: Physically constrained ML



Hybrid physics – machine learning: "Neural GCM"



Kochkov et al. (2023) Neural General Circulation Models https://doi.org/10.48550/arXiv.2311.07222

Trained on data assimilation outputs (ERA5)

Hybrid data assimilation and machine learning: train the neural network (forecast model, or bias correction) as part of the data assimilation process

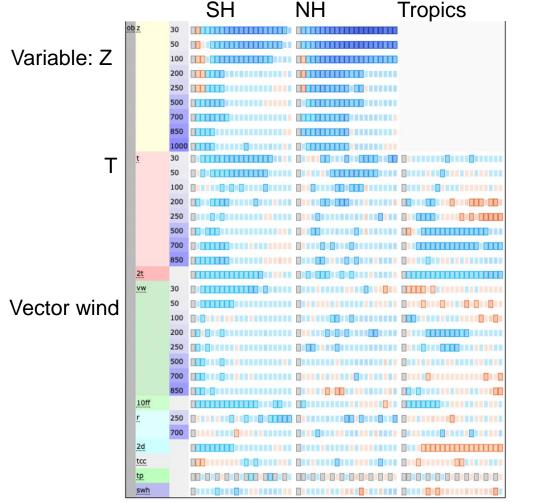
• Simultaneous estimation of the initial conditions, NN parameters and dynamical parameters of a model (e.g. Lorenz '63) using data assimilation (Hsieh and Tang, 2001, <u>https://doi.org/10.1175/1520-</u> 0493(2001)129<0818:CNNTID>2.0.CO;2)

• Use iterative cycles of data assimilation followed by neural network training (Brajard et al., 2020, <u>https://doi.org/10.1016/j.jocs.2020.101171</u>)

- In development at ECMWF train a NN within 4D-Var quasi-geostrophic (QG) model / OOPS
 - "Online model error correction with neural networks in the incremental 4D-Var framework"
 - Alban Farchi, Marcin Chrust, Marc Bocquet, Patrick Laloyaux, Massimo Bonavita (2022, <u>https://doi.org/10.48550/arXiv.2210.13817</u>)
- "Online learning" or sequential learning is a thing in ML too (compared to "train once" approach)
 - e.g. Online sequential Extreme Learning Machine (OS-ELM, Liang et al., 2006) https://doi.org/10.1109/TNN.2006.880583
 - e.g. Forecasting daily streamflow using OSELM (Lima, Cannon, Hsieh, 2016)

https://doi.org/10.1016/j.jhydrol.2016.03.017

Real payoff: apply online model bias corrections in the forecast model Marcin Chrust, Alban Farchi, Patrick Laloyaux, Massimo Bonavita



Time through 10 day forecast

Score cards (verifications against observation, 3 DEC 2020 – 28 FEB 2021)

Exp: Online NN model error correction (1hourly) applied in FCLONG (1-hourly) with reduced magnitude:

Control has no online model error correction

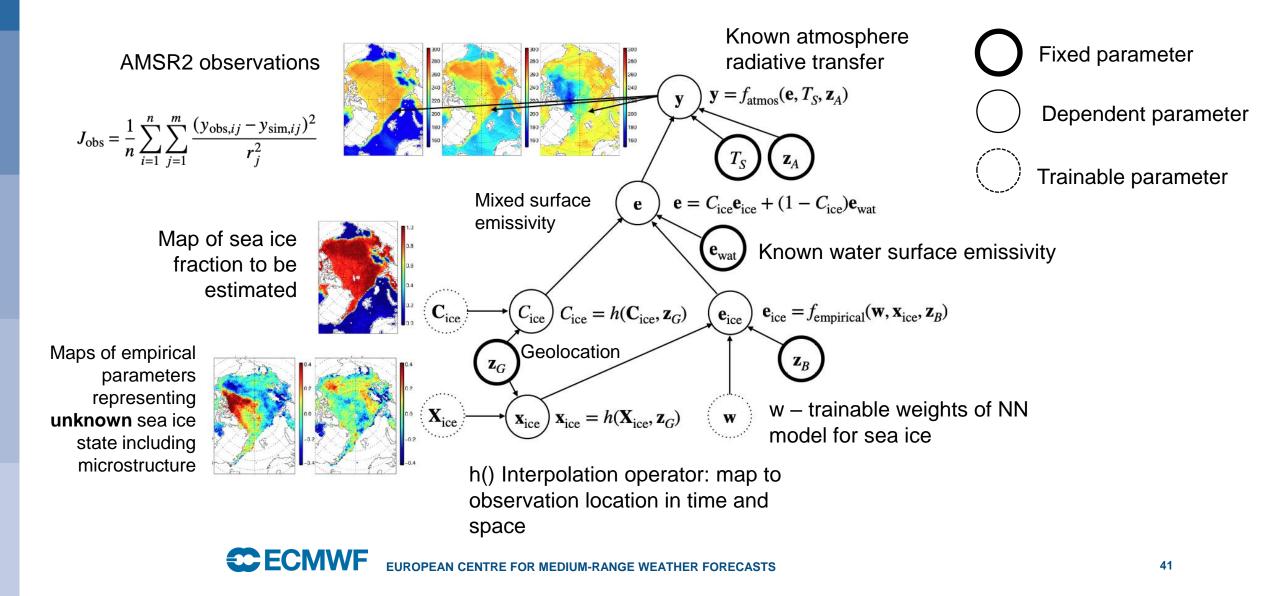
Blue = reduced forecast error in experiment compared to control (red = increased)

Hybrid data assimilation and machine learning

Sea ice example

© ECMWF March 8, 2024

A trainable empirical-physical network for sea ice assimilation

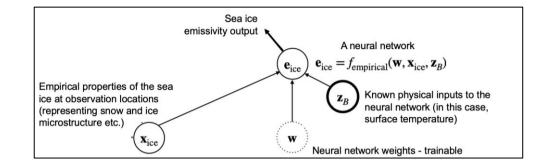


Built in Python and Tensorflow

```
class SeaiceEmis(tf.keras.layers.Layer):
```

....

Linear dense layer representing the sea ice emissivity empirical model.



The sea ice loss applies to just the first mean emissivity (e.g. channel 10v); it's a single number as required.

```
def __init__(self, channels=10, bg_error=0.1, nobs=1, background=0.93):
```

```
super(SeaiceEmis, self).__init__()
```

self.dense_1 = tf.keras.layers.Dense(channels, activation='linear', bias_initializer=tf.keras.initializers.Constant(background))

def call(self, tsfc, ice_properties):

```
inputs = tf.concat([tf.reshape(tsfc,(-1,1)),ice_properties],1)
```

ice_emis = self.dense_1(inputs)

emis_loss = tf.math.squared_difference((self.weights[1])[0], self.background)/tf.square(self.bg_error)/self.nobs

self.add_loss(emis_loss)

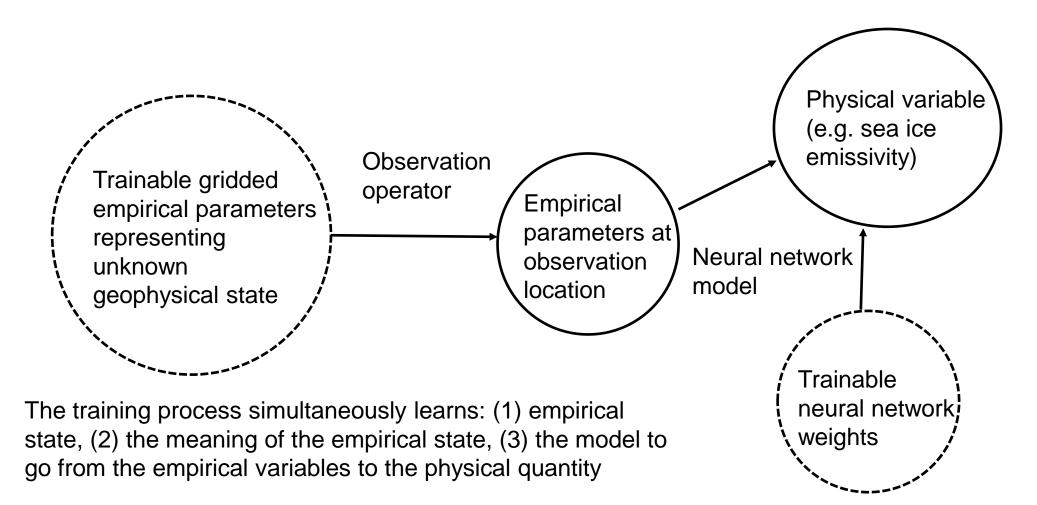
self.add_metric(emis_loss,name='emis_loss',aggregation='mean')

return ice_emis

Custom loss functions to regularise / constrain the solution

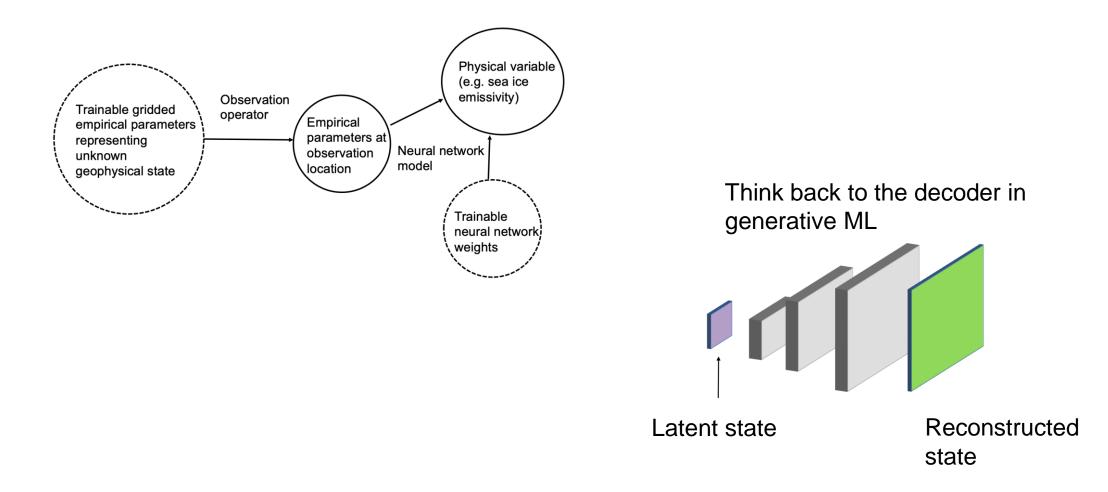
https://github.com/ecmwf-projects/empirical-state-learning-seaice-emissivity-model/blob/master/seaice_layers.py

Fundamentals of this "Empirical state" method

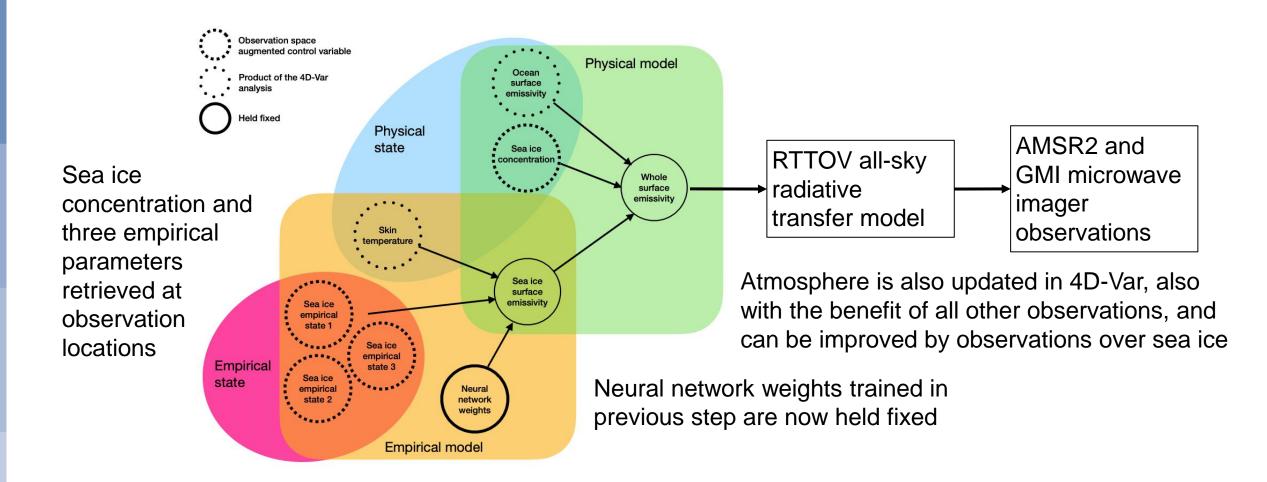


CECMWF

Fundamentals of this "Empirical state" method

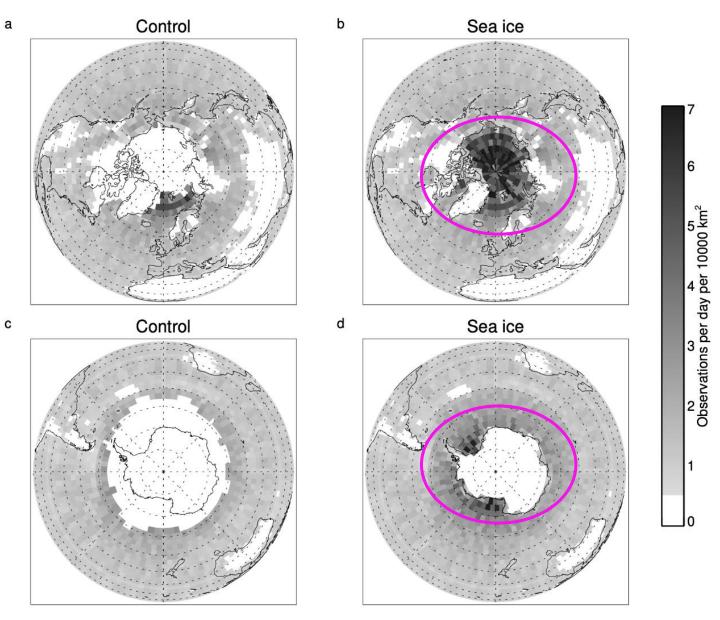


Empirical sea ice emissivity model used to retrieve sea ice concentration in atmospheric 4D-Var and to allow radiance assimilation over sea ice



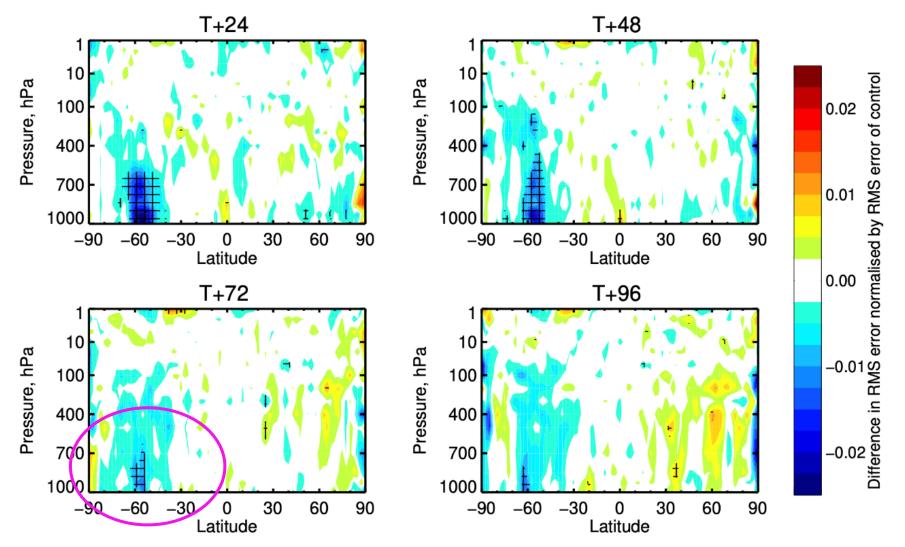
Number of AMSR2 observations added

Up to around 7 observations per day per 10,000 km² have been added over sea ice regions



Forecast impact - temperature (blue = reduced error; +++ = statistical significance)

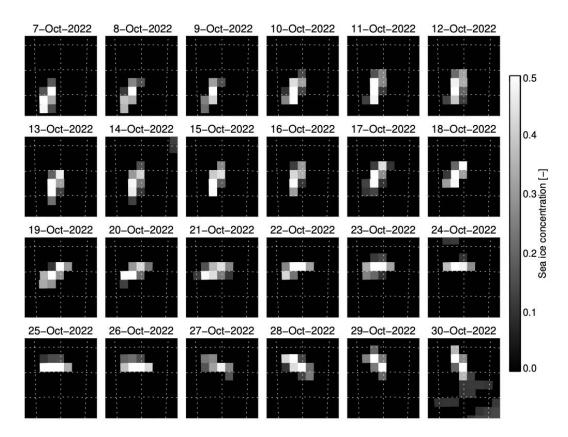
Improved temperature forecasts out to 72 hours in the Southern Ocean



Giant iceberg case studies: accurate retrievals to superob scale (40 km)



12 UTC 4th Dec 2020 – A68A (100 km by 60 km) Iceberg approaching island of South Georgia. Copernicus sentinel data 2020



October 2022 – A76A (135 km by 26 km) Iceberg moving slowly N and rotating 180° in Drake Passage

Map grid resolution: 1º latitude, 2º longitude.

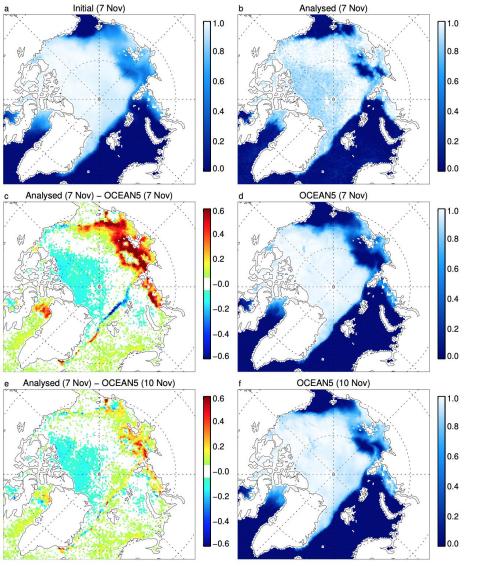
Pixel (AMSR2 superob) resolution ~40 km

ECMUF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Sea ice fraction retrieval: rapid freezing 7th Nov 2020

Sea ice concentration

Difference in sea ice concentration



New retrieval from AMSR2

Existing ECMWF sea ice analysis

Existing analysis three days later

Hybrid physical-empirical networks - sea ice example

• Sea ice concentration and empirical state estimation will be included in cycle 49r1 of the IFS

- Model for sea ice emissivity is the simple neural network trained within the hybrid-empirical physical network (and held fixed for now)
- Operational implementation autumn 2024 one of the first machine-learned components of the operational IFS
 - Maintainability? Retraining?

Geer (2023) Simultaneous inference of sea ice state and surface emissivity model using machine learning and data assimilation <u>https://doi.org/10.22541/essoar.169945325.51725282/v1</u>

• Preprints

Geer (2024) Joint estimation of sea ice and atmospheric state from microwave imagers in operational weather forecasting <u>https://doi.org/10.22541/essoar.170431213.35796940/v1</u>

Summary: generating new empirical models using ML and DA



- Typical machine learning and variational data assimilation are similar implementations of Bayes' theorem
- Including known physics into a trainable network is a way of adding prior information in a Bayesian sense
- Existing data assimilation approaches can be very helpful in machine learning:
 - · Physically-based loss functions
 - Physically-based observation (label) and background (feature) errors
 - Observation operators to map from grid to irregular and transformed observation space (e.g. satellite radiances)
- Data assimilation frameworks (e.g. weather forecasting) are evolving to be able to train and update empirical models (e.g. neural networks) as part of routine data assimilation activities

- E.g. model error correction: don't throw away the physical model - improve it!

CECMWF