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Interpreting the weather situation

Definition
Analysis: The process of approximating the true state of a (geo-)physical
system at a given time using the available knowledge.

X First hand analysis of synoptic X Polynomial Interpolation in the
observations in 1850 by 1950s by Panofsky with the
LeVerrier and Fitzroy. developments of computers

f observations
/W

Space

The black dots denote the data points, while the
red curve shows the polynomial interpolation.
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Background

X An important step forward was made by Gilchrist and Cressman (1954),
who introduced the idea of using a previous numerical forecast to provide
a preliminary estimate of the analysis.

) £ observations P

background
(

Spacg

X This prior estimate was called the background.
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Optimal interpolation

X Bergthorsson and Dd6s (1955) took the idea of using a background field a
step further by casting the analysis problem in terms of increments which

were added to the background.
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Optimal interpolation

X Bergthorsson and Dd6s (1955) took the idea of using a background field a
step further by casting the analysis problem in terms of increments which
were added to the background.

f ® ,bservation of

background _analysis @ observation
increment increment

Space Space

X The increments were weighted linear combinations of nearby observation
increments (observation minus background), with the weights determined
statistically.
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Optimal interpolation

X Bergthorsson and Dd6s (1955) took the idea of using a background field a
step further by casting the analysis problem in terms of increments which
were added to the background.

f . observation of

analysis

background _analysis @ observation
increment increment

Space Space

X The increments were weighted linear combinations of nearby observation
increments (observation minus background), with the weights determined
statistically.

X This idea of statistical combination of background and synoptic
observations led ultimately to Optimal Interpolation.

X The use of statistics to merge model fields with observations is
fundamental to all current methods of analysis.
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Data Assimilation

X An important change of emphasis happened in the early 1970s with the
introduction of primitive-equation models.

X Primitive equation models support inertia-gravity waves. This makes them
much more fussy about their initial conditions than the filtered models that
had been used hitherto.

X The analysis procedure became much more intimately linked with the
model. The analysis had to produce an initial state that respected the
model’s dynamical balances.

X Unbalanced increments from the analysis procedure would be rejected as
a result of geostrophic adjustment.

X Initialisation techniques (which suppress inertia-gravity waves) became
important.
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Data Assimilation

The idea that the analysis procedure must present observational information to
the model in a way in which it can be absorbed (i.e. not rejected by geostrophic
adjustment) led to the coining of the term data assimilation.

Wiktionary: Assimilate
1. To incorporate nutrients into the body, especially after digestion.

< Food is assimilated and converted into organic tissue.
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the model in a way in which it can be absorbed (i.e. not rejected by geostrophic
adjustment) led to the coining of the term data assimilation.

Wiktionary: Assimilate

1. To incorporate nutrients into the body, especially after digestion.
< Food is assimilated and converted into organic tissue.
2. To incorporate or absorb knowledge into the mind.

<> The teacher paused in their lecture to allow the students to assimilate what they had said.
3. To absorb a group of people into a community.

<> The aliens in the science-fiction film wanted to assimilate human beings into their own race.
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Data Assimilation

The idea that the analysis procedure must present observational information to
the model in a way in which it can be absorbed (i.e. not rejected by geostrophic
adjustment) led to the coining of the term data assimilation.

Wiktionary: Assimilate

1. To incorporate nutrients into the body, especially after digestion.
< Food is assimilated and converted into organic tissue.
2. To incorporate or absorb knowledge into the mind.

<> The teacher paused in their lecture to allow the students to assimilate what they had said.
3. To absorb a group of people into a community.

<> The aliens in the science-fiction film wanted to assimilate human beings into their own race.

Our definition
X The process of objectively adapting the model state to observations in a

statistically optimal way taking into account model and observation errors
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Data Assimilation

X A final impetus towards the modern concept of data assimilation came
from the increasing availability of asynoptic observations from satellite
instruments.

X It was no longer sufficient to think of the analysis purely in terms of spatial
interpolation of contemporaneous observations.

X The time dimension became important, and the model dynamics assumed
the role of propagating observational information in time to allow a synoptic
view of the state of the system to be generated from asynoptic data.

& hourly ﬂMqu A da ta coverage

X Example of satellite data
coverage in 6 hours
(AMSU-A data).
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Outline

@ Elementary Statistics — The Scalar Analysis Problem
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Elementary Statistics

Problem

Suppose we want to estimate the body temperature of a person, given:
X A prior estimate: Tp.
X A thermometer: T,.

X The true (unknown) body temperature T;.

Errors

X The errorsin Tp and T, are:

Ep = Tb_Tt
80 — TO_Tt

X €, and €, are random variables (or stochastic variables)
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Elementary Statistics

Hypotheses
X We will assume that the error statistics of T, and T, are known.
Error distribution

» Possible values
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Elementary Statistics

Hypotheses
X We will assume that the error statistics of T, and T, are known.
Error distribution

» Possible values

X We will assume that T, and T, have been adjusted (bias corrected) so that
their mean errors are zero:

Sb — 80 :O.

X There is usually no reason for €, and €, to be connected in any way:

Eogb — O.

X The quantity €,€, represents the covariance between the error of our prior
estimate and the error of our thermometer measurement.
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Elementary Statistics

X We estimate the body temperature as a linear combination of T, and T,:

To=0oT,+BTp+7Y
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Elementary Statistics

X We estimate the body temperature as a linear combination of T, and T:
To=0oT,+BTp+7Y

X Denote the error of our estimate as €; = T,— T;.
X We have:

T.=T,+ €, :(X(Tt—l— So)+B(Tt+ 8b>+y

or €& =(+P—1)T;+a & +P € +7v
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Elementary Statistics

X We estimate the body temperature as a linear combination of T, and T:
To=0oT,+BTp+7Y

X Denote the error of our estimate as €; = T,— T;.
X We have:

T.=T,+ €, :(X(Tt—l— €o)+B(Tt+ 8b>+y

or €& =(+P—1)T;+a & +P € +7v

X We want the estimate to be unbiased: g, =0:

€ =(0+Pp—1)Ti+y=0
X Since this holds for any T;, we must have
~ y=0anda+pf—1=0.
X Then
To=0To+(1—)Tp
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Elementary Statistics

X The general Linear Unbiased Estimate is:
To=0aTo+(1—a)Tp

X Now consider the error of this estimate.
X Subtracting T; from both sides of the equation gives

€2 =0 & +(1—0a) &
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Elementary Statistics

X The general Linear Unbiased Estimate is:
To=0aTo+(1—a)Tp

X Now consider the error of this estimate.
X Subtracting T; from both sides of the equation gives

€2 =0 & +(1—0a) &

o=1 o o=0
] i — ] i — ] i —
’II‘b ‘ rfo ’II‘b ‘ T o ’II‘b ‘ rfo
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Elementary Statistics

X The general Linear Unbiased Estimate is:
To=0aTo+(1—a)Tp

X Now consider the error of this estimate.
X Subtracting T; from both sides of the equation gives

€2 =0 & +(1—0a) &
X The variance of the estimate is:
_ _ -
e2 =0 g2 +20(1— o) &8 +(1—a) g
X With the previous hypothesis €,€, = 0:

m ,
g2 =a g2 +(1—a) &
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Elementary Statistics

m ,
e2 =a° e +(1—-a) &

We can easily derive some properties of our estimate:

d82 -
X —2-20e2-2(1—a)e -
do e ,
— a
X Foro,=0,€2=¢2and dea:—zeg<o \
— \
X Fora=1, 82—82andd£a 2€2 >0 N\
N
\\ e
. -
From this we can deduce: 0 02 04 06 08 1

_ — —
X For0<a<1, g < max(e2,€2)
X The minimum-variance estimate occurs for o, € (0,1).

X The minimum-variance estimate satisfies €2 < min(g2,€2) . which means
it is lower than the variance of each piece of information.
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Elementary Statistics
The minimum-variance estimate occurs when

T
_ oq o2 2 _
= = 200e2 —2(1—0a)e2 =
€
= o0 =—.
g2 + €2

It is not difficult to show that the error variance of this minimum-variance
estimate is:

1 1 1
— = —_ t—
e & &
and the analysis is:
Ta _ Tb 4 To
e & &
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e Extension to Multiple Dimensions
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A Covid story - Part 2
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Extension to Multiple Dimensions

X Now, let’s turn our attention to the multi-dimensional case.
X Instead of a scalar prior estimate T,, we now consider a vector Xy,

X We can think of x,, as representing the entire state of a numerical model at
some time.

X The elements of x;, might be grid-point values, spherical harmonic
coefficients, etc., and some elements may represent temperatures,
humidity, others wind components, etc.

X We refer to x,, as the background.
X Similarly, we generalise the observation to a vectory.

X y can contain a disparate collection of observations at different locations,
and of different variables.
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Extension to Multiple Dimensions

X The major difference between the simple scalar example and the
multi-dimensional case is that there is no longer a one-to-one
correspondence between the elements of the observation vector and
those of the background vector.

R

X It is no longer trivial to compare observations and background.

X When the background is a state of a numerical model at some time
= QObservations are not necessarily located at model gridpoints
= The observed variables (e.g. radiances) may not correspond directly with any of the
variables of the model.
= To overcome this problem, we must assume that our model is a more-or-less
complete representation of reality, so that we can always determine “model
equivalents” of the observations.
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Extension to Multiple Dimensions
X We formalise this by assuming the existence of an observation operator,
H.

X Given a model-space vector, X, the vector #(x) can be compared directly
with y, and represents the “model equivalent” of y.

x&ﬂ(x)%mey

X For now, we will assume that % is perfect. l.e. it does not introduce any
error, so that:

H(Xt) =¥t

where X; is the true state, and y; contains the true values of the observed
quantities.
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Extension to Multiple Dimensions

X As we did in the scalar case, we will look for an analysis that is a linear
combination of the available information:

X,=FXxy,+Ky+c

where F and K are matrices, and where ¢ is a vector.

X If # is linear, we can proceed as in the scalar case and look for a linear
unbiased estimate.

X In the more general case of nonlinear #, we will require that error-free
inputs (X, = X; and y = y;) produce an error-free analysis (X5 = X;):

x;=Fx;+KH(x;)+c¢
X Since this applies for any x;, we must have ¢ = 0 and
I=F+K#H(-) or F=1-K#(-)
X Our analysis equation is thus:

Xa = Xp+ K(y — 7 (xp))

A
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Extension to Multiple Dimensions
Xa = Xp+ K(y — H(x5))

X Remember that in the scalar case, we had

To = aT,+(1—) T,
= Tb—l—(X(To—Tb)

X We see that the matrix K plays a role equivalent to that of the coefficient o.
X Kis called the gain matrix.
X It determines the weight given to the innovation y — #(Xy)

X It handles the transformation of information defined in “observation space”
to the space of model variables.
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Extension to Multiple Dimensions

X The next step in deriving the analysis equation is to describe the statistical

properties of the analysis errors.

X We define
€a = X — X
Ep = Xp—X;
€ = Y—VY;

X We will assume that the errors are small, so that
H(xp) = H(x:)+HEp + O gi )

where H is the Jacobian of # (if # is nonlinear).

A
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Extension to Multiple Dimensions

X Substituting the expressions for the errors into our analysis equation, and
using # (x;) =y, gives (to first order):

€a = €& +K(€& —H&)

X As in the scalar example, we will assume that the mean errors have been
removed, so that €, = €, = 0. We see that this implies that €, = 0.

X In the scalar example, we derived the variance of the analysis error, and
defined our optimal analysis to minimise this variance.

X In the multi-dimensional case, we must deal with covariances.
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Covariance

X The covariance between two variables x; and Xx; is defined as

cov(x;, x;) = (xi — X;)(X; — X;)

X Given a vector x = (xq, Xo, - - - ,XN)T, we can arrange the covariances into a
covariance matrix, C, such that C; = cov(x;, x;).

X Equivalently:

C=(x—x)(x—x)!

X Covariance matrices are symmetric and positive definite
~ symmetric: CT =C
= positive definite: z' Cz is positive for every non-zero vector z

A
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Extension to Multiple Dimensions

X The analysis error is:

€, = € +K(80 —H sb)
(l—KH) € +K &,
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Extension to Multiple Dimensions

X The analysis error is:

€, = € +K(eo —Hab)
= (|—KH) € +K &,

X Forming the analysis error covariance matrix gives:

el — [(I—KH) & +Keo | [(I-KH) & +K& |
= (I-KH) gl (1—KH)'

~ T kT
+ Kgel K

T —
+ K gel (I-KH) +(1—KH) g, K'

X Assuming that the background and observation errors are uncorrelated
(ile. gel = g,el =0), wefind:

g1 = (I—KH) g7 (1—KH)' +K gl K"

A
(N ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS O©ECMWF 28 /40



Extension to Multiple Dimensions
£ = (1—KH) g,e7 (I-KH)"' +K gl K"

X This expression is the equivalent of the expression we obtained for the
error of the scalar analysis:

_ 2 o 2 "o
g2 = (1—-a) e +o g

= (1-a)e2 (1—a)+to e o

X Again, we see that K plays essentially the same role in the
multi-dimensional analysis as o plays in the scalar case.

X In the scalar case, we chose o to minimise the variance of the analysis
error.

X What do we mean by the minimum-variance analysis in the
multi-dimensional case?

A
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Extension to Multiple Dimensions

X Note that the diagonal elements of a covariance matrix are variances
Ci = cov(x;, ;) = (x; — X;)?.

X Hence, we can define the minimum-variance analysis as the analysis that
minimises the sum of the diagonal elements of the analysis error
covariance matrix.

X The sum of the diagonal elements of a matrix is called the trace.

. . . . H _2
X In the scalar case, we found the minimum-variance analysis by setting %

to zero.
X In the multidimensional case, we are going to set

dtrace(€.€])
oK
otrace(€€! otrace(€€!
X Note: (a22) is the matrix whose ijj" element is (£ a).
oK oK;
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Extension to Multiple Dimensions
X We have: gl = (I—KH) gyel (I—KH)' +K gl K.
X The following matrix identities come to our rescue:

dtrace(KAK')

_ T
K = K(A+A")
dtrace(KA) T
= A
oK
dtrace(AK')
= A
oK

X Applying these to dtrace(e.£T)/IK gives:

dtrace( g,e7 )
oK

= 2K {H epel H' + gogT] —2¢g,eTH =0

1
X Hence: K= g,e0 H' [H g, H'+ g8 |
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Extension to Multiple Dimensions
—— Ty == T, — "
K= gbgz H {H gbgg H + 8083]

X This optimal gain matrix is called the Kalman Gain Matrix.
X Note the similarity with the optimal gain we derived for the scalar analysis:

. . I
o= & &+ 8|
X The variance of analysis error for the optimal scalar problem was:
1 1 1

= —+

2 o2 2
€3 €y €5

X The equivalent expression for the multi-dimensional case is:

—1 —1 1
{ eag;l; ] — [ gbg}; ] + HT { 8083 } H

A
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Notation

X The notation we have used for covariance matrices can get a bit
cumbersome.

X The standard notation is:

P = gl
. =
P” = ¢/
R = €,€T

X In many analysis schemes, the true covariance matrix of background error,
P®, is not known, or is too large to be used.

X In this case, we use an approximate background error covariance matrix.
This approximate matrix is denoted by B.

A
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Alternative Expression for the Kalman Gain
Finally, we derive an alternative expression for the Kalman gain:

K = P°HT [HP’HT +R]

Multiplying both sides by [Pb‘1 + HTR‘1H} gives:

P+ HTR'H| K = [HT+HR™'HP’H"] [HP°HT - R]

= H'R™" [R+HP°H"] [HP’HT +-R]

— H'R™

Hence:

_ 1
K= [Pb 1+HTR—1H] HTR

X Expression 1: need the inverse of a matrix of dimension size(R)
X Expression 2: need the inverse of a matrix of dimension size(P®)
X Remember that X, = X, + K(y — #H(X5))

A
(N ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS O©ECMWF 34 /40



Outline

Q Optimal Interpolation
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Optimal Interpolation

X Optimal Interpolation is a statistical data assimilation method based on the
multi-dimensional analysis equations we have just derived.

X The Kalman gain K can not be computed because of the size of P° and R
X The basic idea is to split the global analysis into a number of boxes which

can be analysed independently:

xy) = x4+ K0 {y(") — ?{(")(xb)}

where

L

Y

\ %"

g

K (M)

,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,

,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,

X The method was used operationally at ECMWF from 1979 untll 1996
when it was replaced by 3D-Var.
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Optimal Interpolation

x) — x4 KO <y(i) _ g{(i)(xb))

X In principle, we should use all available observations to calculate the
analysis for each box. However, this might be too expensive.

X To produce a computationally-feasible algorithm, Optimal Interpolation (Ol)
restricts the observations used for each box to those observations which
lie in a surrounding selection area:

SPOEEER 3 RERREEEEEEEEES SEEEFEEEES Analysis box

| @ : .
””T””‘F”’A””*‘ ””” Observations

,,,,,,,,,,,,,,,,,,,
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Optimal Interpolation

x) — x4 KO <y(i) _ g{(i)(xb)>

X In principle, we should use all available observations to calculate the
analysis for each box. However, this might be too expensive.

X To produce a computationally-feasible algorithm, Optimal Interpolation (Ol)

restricts the observations used for each box to those observations which

lie in a surrounding

selection area:
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Analysis box
Used observations

Selection area

Rejected observations
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Optimal Interpolation

X The gain matrix used for each box is:

K(I) _ (PbHT) () |:(HPbHT) () + R(I):| -

X Now, the dimension of the matrix [(HP"HT)(/) + R(’)] is equal to the
number of observations in the selection box.

X Selecting observations reduces the size of this matrix, making it feasible to
use direct solution methods to invert it.

X Note that to implement Optimal Interpolation, we have to specify (PbHT)(i)
and (HPbHT)(') . This effectively limits us to very simple observation
operators, corresponding to simple interpolations.

X This, together with the artifacts introduced by observation selection, was
one of the main reasons for abandoning Optimal Interpolation in favour of
3D-Var.
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Outline

G Summary
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Summary

X We derived the linear analysis equation for a simple scalar example.

X We showed that a particular choice of the weight o given to the
observation resulted in an optimal minimum-variance analysis.

X We repeated the derivation for the multi-dimensional case. This required
the introduction of the observation operator.

X The derivation for the multi-dimensional case closely parallelled the scalar
derivation.

X The expressions for the gain matrix and analysis error covariance matrix
were recognisably similar to the corresponding scalar expressions.

X Finally, we considered the practical implementation of the analysis
equation, in an Optimal Interpolation data assimilation scheme.
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