Machine Learning Foundations

Jesper Dramsch

Scientist for Machine Learning

Jesper.Dramsch@ecmwf.int

Outline

- Understanding AI & Machine Learning
- Types of Machine Learning
- Key Concepts in Machine Learning
- Dealing with Data
- Finding the Optimal Model

Understanding AI & ML

🏵 ECMWF 🚍 💶 📰 🚼 🚍 📰 💵 🚍 🔚 💵 🔳 🔳 🚍 🚍 🔠 💷 🖆 💶 📲 🚺 🖾 🔤 📲 🚺 🖾 🚔 🚺 🖾 🛸

Artificial Intelligence

"Machine Learning is a set of algorithms that

improve their **performance** on a set **task**

through experience."

Statistical Methods & Numerical Optimisation

Many Models – Many Methods

Neural Networks

Hewson and Pillosu 2020

Support-Vector Machine

CC-BY-SA 4.0 Alisneaky / Zirguezi

Why I'm keeping the details on models short

• Modern software packages make machine learning easy!

Choose a model

>>> from sklearn import svm
>>> clf = svm.SVC(gamma=0.001, C=100.)

Fit the model to training data

>>> clf.fit(digits.data[:-1], digits.target[:-1])
SVC(C=100.0, gamma=0.001)

Use model to predict

```
>>> clf.predict(digits.data[-1:])
array([8])
```


K Keras

Types of Machine Learning

🏵 ECMWF 🚍 📕 📰 ዙ 🚍 🚼 🔳 💻 🚝 🔠 📕 🔳 🚍 🚍 🚟 💷 🖾 🖬 🖬 🖬 🖬 🖾 🖾 🖆 🚱 🖉

Supervised Learning

Supervised Learning – Classification

Supervised Learning – Regression

Classical Modelling

Supervised Machine Learning Modelling

Unsupervised Learning

Unsupervised Learning – Clustering

Unsupervised Learning – Dimensionality Reduction

Unsupervised Learning – Self-supervision

Unsupervised Machine Learning

- Unlabeled data
 - Labeling needs expertise and is expensive
 - Labeling can introduce bias
- Exploits the internal structure of data
- Can accomplish different tasks
 - Assign Labels
 - Reduce complexity of data
 - Fill missing parts of data

Semi-Supervised Learning

Semi-Supervised Learning – Cloud Classification

Reinforcement Learning

Reinforcement Learning – Games

Reinforcement Learning – Real World

The Types of Machine Learning

Other "Learning" which is not a "Type"

😂 ECMWF 🚍 📕 🗷 🖶 🚍 🚼 📕 💻 🗮 📲 📕 📕 🚍 🚍 🔚 🖬 🖾 🖾 🖆 🖬 🖬 🖬 🖬 🖬 🖉 😂 🖆 🖉 🖾 👘 👘 🗰 🗮 🗰 🗰 🗰 🗰 👘

Deep learning and artificial neural networks as one example of machine learning

The concept:

Take input and output samples from a large data set Learn to predict outputs from inputs Predict the output for unseen inputs

The key:

. . .

Neural networks can learn a complex task as a "black box" No previous knowledge about the system is required More data will allow for better networks

The number of applications is increasing by day:

Image recognition Speech recognition Healthcare Gaming Finance Music composition and art

And weather/climate!

Transfer Learning and Domain Adaptation

Key Concepts in Machine Learning

😂 ECMWF 🚍 📕 📰 🚼 📰 📕 🔳 📕 📕 📕 📕 🔳 📰 🚍 📰 💷 🔚 🖬 💷 👫 📕 💷 🕮 📰 💷 29

Machine Learning Evaluation - Classification

- Measure performance of model against "answers we know"
- Confusion Matrix
 - **True Positive** _
 - **True Negative** —
 - False Positive
 - False Negative _
 - Works with Multi-class
- Class Imbalance skews results

Machine Learning Evaluation - Classification

- Receiver Operator Characteristic (ROC)
 - Balances acceptable false positive rate with desired true positive rate
- Used to define class thresholds
- · Works on balanced data
 - For imbalanced use Precision-Recall curves

• ML models rise and fall by their metrics

"Generalization is a ML model's ability to

generate accurate and reliable predictions on

previously unseen data."

Generalization and Overfitting

- ML model learns from historic data
- Generalization for performance on unseen data
- Underfitting
 - Model can't fit the complex data
- Overfitting
 - Model exactly fits the training data
 - Does not generalize to unseen data
- Overfitting can be avoided by
 - Reducing model complexity
 - Regularization
 - Pruning
 - Etc.

Dealing with Data

😂 ECMWF 🚍 📕 📧 🕂 🚍 💶 📰 📕 📕 📕 📕 📕 💻 🚍 📰 🖼 🖬 🖬 🖬 🖬 🖉 🖾 🖆 🚺 🖾 👫 📔 🔤 🔤 📰 📰 🗮 🚺 🗰 💥 🚺

Data Preprocessing

- Machine learning models struggle with irregular data
- Imputation
 - Filling in missing values
 - Often with Mean or Median
- Data Cleaning
 - Removing noise from data
 - Careful! Easy to "over-clean"
 - Needs to be faithful to real-world data
- Normalisation
 - Standardization
 - Min-Max Scaling
- Transformations
 - Log-Scaling

Feature Engineering

Incremental Learning / Batch Processing

Big Data

Batch 1

Batch 2

Hyperparameters and finding the optimal model

🏵 ECMWF 🚍 💶 📰 🚼 🚍 📰 🔳 🚍 📇 💵 🔳 🔳 🚍 🚍 🔠 💷 🖾 🖾 🖬 🖬 🖬 🖬 ன 🖾 🖼 📲 🖬 🖉 🖼 🕷

"There is no Free Lunch."

Hyperparameters and Tuning

- Parameters:
 - Statistical Term
 - E.g. Parametric / non-parametric model
- Hyperparameters:
 - "Settings of Model"
- Examples of Hyperparameters:
 - Number of nodes
 - Number of layers
 - Number of Trees
 - Learning Rate of optimization process
 - Batch size, of incremental training

Decision Trees

Grid search

- Exhaustive Search
- Every Combination is Evaluated
- Combinatoric Explosion of Evals
- Inefficient searching beyond minimum
- Possible to miss optimal parameters because explicit values are provided

Randomized search

- Exhaustive Search
- Budget independent of No. parameters
- Adding Parameters not Inefficient
- Inefficient searching beyond minimum
- Possible to miss optimal parameters

because explicit values are provided

```
1 from sklearn.model_selection import RandomizedSearchCV
2 from scipy.stats import uniform
3
4 distributions = {'width': uniform(5, 15),
5 'depth': uniform(1, 5),
6 'activation':['tanh', 'relu']}
7
8 randomcv = RandomizedSearchCV(neural_network, distributions)
9
10 randomcv.fit(X_train, y_train)
```

Bayesian search

- Search based on former parameters
- Bayesian Optimization
- Converges to a minimum
- Adding Parameters adds complexity
- Unimportant parameters complicate optimization significantly

1 from skopt import BayesSearchCV
2
3 distributions = {{ 'width': (5, 20, 'uniform'),
4 'depth': (1, 6, 'uniform'),
5 'activation':['tanh', 'relu']}
6
<pre>7 randomcv = BayesSearchCV(neural_network, distributions)</pre>
8
9 randomcv.fit(X_train, y_train)

Conclusion

😂 ECMWF 🚍 📕 🗷 🕂 📰 📕 📕 📕 📕 📕 📕 🔳 🚍 🚍 🔚 🖬 🖾 🖾 🖆 🖾 🖾 👘 🖾 🖾 👘 🖾 🖾 🖾 🖾 🗰 🗰 🗰 🗮 🗰 🖊

What we Learned

- Al and Machine Learning are related but distinct
- Open-source software makes ML easier
- Types of machine learning model:
 - Un-, Semi-, Supervised learning
 - Reinforcement Learning
- Other relevant "Learning"
 - Deep Learning
 - Transfer Learning
- Generalization and Overfitting
- Data-Preprocessing
- Hyperparameter tuning