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Introduction

“Self-supervised learning: The dark matter 
  of intelligence”
https://ai.meta.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
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Introduction

Motivation--two sides of the same coin:

• Overcome limits imposed by requiring labelled data for training
• Train on unlabelled data, i.e. data as it can be found ”in the wild” 

• Train a neural network that is useful for a wide range of tasks
• Training strategy and problem formulation that goes beyond 

supervised, task specific learning



6EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Why can this work at all? 

• Small neural (e.g. a 10,000 parameter MLP) are interpolation 
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Why can this work at all? 

• Small neural (e.g. a 10,000 parameter MLP) are interpolation 
“engines”.

• Well-trained networks with 100s of millions or billions of parameters 
behave qualitatively differently

• LLMs can answer a wide range of questions not seen during 
training

• Pangu-Weather, GraphCast, AIFS provide skillful predictions 
multiple years past their training data set
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Two different perspectives
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Two different perspectives

1. Feature spaces:
• Hidden/latent state of a neural network is vector
• Feature spaces reveal important structures and remove noise

• Analogous to Fourier domain, POD/PCA, …
• BUT: learned and nonlinear

MLP layer

MLP layer

MLP layer

…
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Two different perspectives

2. Learn general probabilistic model 
• When x, y are defined sufficiently general than this is task 

independent
• E.g.              the joint distribution over natural language

• Chat bot: x = question, y = answer
• Translation: x = language A, y = language B
• Spell/grammar correction: x = incorrect, y = corrected
• Creative writing: x = content outline, y = long text form
• … 
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Two different perspectives

Brown et al., Language Models are Few-Shot Learners, 2020, https://arxiv.org/pdf/2005.14165.pdf
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Two different perspectives

Brown et al., Language Models are Few-Shot Learners, 2020, https://arxiv.org/pdf/2005.14165.pdf
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Two different perspectives

Gemini technical report, https://arxiv.org/pdf/2312.11805.pdf
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Two different perspectives

Brown et al., Language Models are Few-Shot Learners, 2020, https://arxiv.org/pdf/2005.14165.pdf

State-of-the-art use 4 steps
of fine-tuning for chat models
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Two different perspectives

2. Learn general probabilistic model 
• When x, y are defined sufficiently general than this is task 

independent
• E.g.              Is the joint distribution over atmospheric states

• Forecasting: x = current state, y = future state
• Downscaling: x = coare res. state, y = fine res. state
• Spatial interpolation: x = incomplete state, y = completed state
• Counterfactual/scenario: x = initial condition in scenario A, y = 

forecast in scenario B
• … 



26EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Self-supervised learning tasks

Self-supervised learning: define a training task from a dataset without an 
explicit set of labels



27EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Self-supervised learning tasks

Self-supervised learning: define a training task from a dataset without an 
explicit set of labels 
=> “hide” some information from the network during input and network
      predicts this information



28EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Self-supervised learning tasks

D. Pathak, P. Krahenbuhl, J. Donahue, T. 
Darrell, and A. A. Efros. Context    encoders: 
Feature learning by inpainting. In 
Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition 
(CVPR), June 2016.

Self-supervised learning: define a training task from a dataset without an 
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=> “hide” some information from the network during input and network
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Self-supervised learning tasks

R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised   learning by cross-channel prediction. In Proceedings of the IEEE Conference on  
Computer Vision and Pattern Recognition (CVPR), July 2017.

Self-supervised learning: define a training task from a dataset without an 
explicit set of labels 
=> “hide” some information from the network during input and network
      predicts this information
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Self-supervised learning tasks

Self-supervised learning: define a training task from a dataset without an 
explicit set of labels 
=> “hide” some information from the network during input and network
      predicts this information

Transformer takes sequence of words as input ((sub-)words, image 
patches, local atmospheric states, …)
=> mask some of the patches from the network during input (or remove
     them entirely) and network predicts these
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Self-supervised learning tasks
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Self-supervised learning tasks
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Self-supervised learning tasks

My

Transformer

house
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a

green
?
.

has

garden

sampled from 
prob. distribution of 
output words

• BERT (Google):1 randomly mask words from a sequence (and add some random distortions)
• Predictive masking (OpenAI):2 always mask subsequent words

1 Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, https://arxiv.org/abs/1810.04805
2 Radford et al. Improving Language Understanding by Generative Pre-Training, https://cdn.openai.com/research-covers/language-
unsupervised/language_understanding_paper.pdf

https://arxiv.org/abs/1810.04805
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Self-supervised learning tasks

Vision transformer: image is a small patch

Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, 2021, https://arxiv.org/abs/2010.11929
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Self-supervised learning tasks

Transformer
…

He et al., Masked Autoencoders Are Scalable Vision Learners, 2021, https://arxiv.org/abs/2111.06377
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Self-supervised learning tasks

Transformer
…

He et al., Masked Autoencoders Are Scalable Vision Learners, 2021, https://arxiv.org/abs/2111.06377
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Self-supervised learning tasks

Lessig et al., AtmoRep: A Stochastic Model of Atmospheric Dynamics, 2023, https://arxiv.org/abs/2308.13280
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Self-supervised learning tasks
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Self-supervised learning tasks

Lessig et al., AtmoRep: A Stochastic Model of Atmospheric Dynamics, 2023, https://arxiv.org/abs/2308.13280

Transformer

…
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Self-supervised learning tasks

Lessig et al., AtmoRep: A Stochastic Model of Atmospheric Dynamics, 2023, https://arxiv.org/abs/2308.13280

Zero-shot
capabilities
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Self-supervised learning tasks
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Self-supervised learning tasks

Lessig et al., AtmoRep: A Stochastic Model of Atmospheric Dynamics, 2023, https://arxiv.org/abs/2308.13280

Zero-shot
capabilities

past future
forecasting
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Self-supervised learning tasks

Lessig et al., AtmoRep: A Stochastic Model of Atmospheric Dynamics, 2023, https://arxiv.org/abs/2308.13280

Zero-shot
capabilities

temporal 
interpolation
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Self-supervised learning tasks

Lessig et al., AtmoRep: A Stochastic Model of Atmospheric Dynamics, 2023, https://arxiv.org/abs/2308.13280

Zero-shot
capabilities

temporal 
interpolation
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Self-supervised learning tasks

• Joined Embedding Predictive Architecture (JEPA)
• Mask but compute loss in hidden/latent space instead of by reconstructing 
• Learn more abstract and robust representations

Bardes et al., Revisiting Feature Prediction for Learning Visual Representations from Video, 2024, https://scontent-cdg4-2.xx.fbcdn.net/v/t39.2365-
6/427986745_768441298640104_1604906292521363076_n.pdf?_nc_cat=103&ccb=1-7&_nc_sid=3c67a6&_nc_ohc=Lpq5IeF5ftUAX9EN6b7&_nc_ht=scontent-
cdg4-2.xx&oh=00_AfCFIyd8GMJnqQsG90WY-ccXwWEooa0XgiWXZm06nd1-pw&oe=65D69EB1
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Self-supervised learning tasks
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Self-supervised learning tasks

Bardes et al., Revisiting Feature Prediction for Learning Visual Representations from Video, 2024, https://scontent-cdg4-2.xx.fbcdn.net/v/t39.2365-
6/427986745_768441298640104_1604906292521363076_n.pdf?_nc_cat=103&ccb=1-7&_nc_sid=3c67a6&_nc_ohc=Lpq5IeF5ftUAX9EN6b7&_nc_ht=scontent-
cdg4-2.xx&oh=00_AfCFIyd8GMJnqQsG90WY-ccXwWEooa0XgiWXZm06nd1-pw&oe=65D69EB1

• Joined Embedding Predictive Architecture (JEPA)
• Mask but compute loss in hidden/latent space instead of by reconstructing 
• Learn more abstract and robust representations

Exponential 
moving average
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Self-supervised learning tasks

• Siamese networks
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• Siamese networks

sample 1 sample 2

same 
network

predict (known)
similarity between 
samples

Latent representation is 
used for applications

classification head
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Self-supervised learning tasks

Hoffmann and Lessig, AtmoDist: Self-supervised Representation Learning for Atmospheric Dynamics, 2022, https://arxiv.org/abs/2202.01897
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Self-supervised learning tasks

Hoffmann and Lessig, AtmoDist: Self-supervised Representation Learning for Atmospheric Dynamics, 2022, https://arxiv.org/abs/2202.01897
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Self-supervised learning tasks

Hoffmann and Lessig, AtmoDist: Self-supervised Representation Learning for Atmospheric Dynamics, 2022, https://arxiv.org/abs/2202.01897
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Self-supervised learning tasks

• Student-teacher 
networks
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Self-supervised learning tasks

• Student-teacher 
networks

two networks so that 
weaker one can learn 
from the stronger one

teacher: take weighted 
average of student 
(exponential moving 
average (EMA))

predict (known)
similarity between 
samples

Latent representation is 
used for applications

sample 1 sample 2

student teacher
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Self-supervised learning tasks

• Student-teacher 
networks

two networks so that 
weaker one can learn 
from the stronger one

teacher: take weighted 
average of student 
(exponential moving 
average (EMA))

predict (known)
similarity between 
samples

Latent representation is 
used for applications

sample 1 sample 2

student teacher

https://www.slideshare.net/slideshow/enact-carrot-stick/53622951
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Self-supervised learning tasks

• Student-teacher networks

Caron et al., Emerging Properties in Self-Supervised Vision Transformers, 2021, https://arxiv.org/abs/2104.14294
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Self-supervised learning tasks

• Student-teacher networks

Caron et al., Emerging Properties in Self-Supervised Vision Transformers, 2021, https://arxiv.org/abs/2104.14294
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Self-supervised learning tasks

• Contrastive learning

class a class A class B

same network
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Self-supervised learning tasks

• Contrastive learning

class a class A class B

A
A

B

same network
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Summary

• Self-supervised learning
• Overcome the limits imposed by requiring labeling of data
• Learn task-agnostic neural networks

• Essentially all of the most powerful vision and language models use 
self-supervised training

• Fine-tuning for specific applications
• Increased robustness and flexibility
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