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Introduction

“Self-supervised learning: The dark matter
of intelligence”

https://ai.meta.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
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Introduction

Motivation--two sides of the same coin:

« Overcome limits imposed by requiring labelled data for training
* Train on unlabelled data, i.e. data as it can be found "in the wild”

« Train a neural network that is useful for a wide range of tasks

 Training strategy and problem formulation that goes beyond
supervised, task specific learning
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Why can this work at all?

« Small neural (e.g. a 10,000 parameter MLP) are interpolation
“‘engines”.
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Why can this work at all?

« Small neural (e.g. a 10,000 parameter MLP) are interpolation
“‘engines”.

« Well-trained networks with 100s of millions or billions of parameters
behave qualitatively differently

« LLMs can answer a wide range of questions not seen during
training

« Pangu-Weather, GraphCast, AIFS provide skillful predictions
multiple years past their training data set
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Two different perspectives

1. Feature spaces:
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Two different perspectives

1. Feature spaces:
 Hidden/latent state of a neural network is vector h, € R

r e RY
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h € RY
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Two different perspectives

1. Feature spaces:

- Hidden/latent state of a neural network is vector i, ¢ R”
* Feature spaces reveal important structures and remove noise

h € RY

>
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Two different perspectives

1. Feature spaces:

 Hidden/latent state of a neural network is vector i & R

* Feature spaces reveal important structures and remove noise

* Analogous to Fourier domain, POD/PCA, ...
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Two different perspectives

1. Feature spaces:

- Hidden/latent state of a neural network is vector i, ¢ R”
* Feature spaces reveal important structures and remove noise

* Analogous to Fourier domain, POD/PCA, ...
« BUT: learned and nonlinear

h € RY

>
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Two different perspectives

2. Learn general probabilistic model p(y, )

 When x, y are defined sufficiently general than this is task
Independent
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2. Learn general probabilistic model p(y, )

 When x, y are defined sufficiently general than this is task
Independent
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Two different perspectives

2. Learn general probabilistic model p(y, )

 When x, y are defined sufficiently general than this is task
Independent

» E.g. p(y, x)the joint distribution over natural language
* Chat bot: x = question, y = answer

Translation: x = language A, y = language B
Spell/grammar correction: x = incorrect, y = corrected
Creative writing: x = content outline, y = long text form

Y
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Two different perspectives

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description

cheese => prompt

Brown et al., Language Models are Few-Shot Learners, 2020, https://arxiv.org/pdf/2005.14165.pdf
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Two different perspectives

One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer example
cheese => prompt

Brown et al., Language Models are Few-Shot Learners, 2020, https://arxiv.org/pdf/2005.14165.pdf
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Two different perspectives

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Brown et al., Language Models are Few-Shot Learners, 2020, https://arxiv.org/pdf/2005.14165.pdf
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Two different perspectives

-

/7
Prompt

Here's a solution to a Physics problem by a student.

23. A skier slides down the frictionless slope as shown. What is the skier’s speed at the bottom?

Start
%)

H=40

Finish
=

Solution: L=80m

The conrenhabon £ abeg iy

e dien & Swre ot Mbﬁf*’wf

maﬁm end.

Stoudd 2 Ef“’\él/
o ”;J,M\/Z
End: © N

= Mﬁ[': yLm\/L
= v=lzgl =2, 9880 = 59.&ms"

Try to reason about the question step by step.

Did the student get the correct answer? If the solution is wrong, please
explain what is wrong and solve the problem.

Make sure to use LaTeX for math and round off the final answer to two
decimal places.

Gemini technical report, https://arxiv.org/pdf/2312.11805.pdf
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Response

The student did not get the correct answer. The student made a mistake
in the calculation of the potential energy at the start of the slope. The
potential energy at the start of the slope is given by mgh, where m is the
mass of the skier, g is the acceleration due to gravity, and h is the height

of the slope. The student used the length of the slope, L, instead of the
height, H, in the calculation of the potential energy.

The correct solution is:

The conservation of energy means that the total energy of the skier is
the same at the beginning and at the end of the slope.

At the start of the slope, the skier has only potential energy, which is
given by mgh.

At t1he end of the slope, the skier has only kinetic energy, which is given
by = mv?
2

Therefore, we can write:

mgh = 1Emv2

Canceling out the mass m on both sides, we get:

e
gh= 7V

Solving for v, we get:
v=V2gh

Substituting the given values, we get:

v=V2x9.81x40 =28.01m/s

Therefore, the skier's speed at the bottom of the slope is 28.01 m/s.
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Two different perspectives

Fine-tuning
The model is trained via repeated gradient updates using a
large corpus of example tasks.

1 sea otter => loutre de mer ¢ example #1

gradient update

eIé

1 peppermint => menthe poivrée < example #2

gradient update

éIé

\%

1 plush giraffe => girafe peluche < example #N

gradient update
1 cheese => < prompt

Brown et al., Language Models are Few-Shot Learners, 2020, https://arxiv.org/pdf/2005.14165.pdf
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Two different perspectives

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter => loutre de mer example #1
peppermint => menthe poivrée example #2
State-of-the-art use 4 steps
of fine-tuning for chat models
plush giraffe => girafe peluche example #N
cheese => prompt

Brown et al., Language Models are Few-Shot Learners, 2020, https://arxiv.org/pdf/2005.14165.pdf
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Two different perspectives

2. Learn general probabilistic model

 When x, y are defined sufficiently general than this is task
Independent

» E.g. p(y, z)Is the joint distribution over atmospheric states
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Two different perspectives

2. Learn general probabilistic model

 When x, y are defined sufficiently general than this is task
Independent

» E.g. p(y, z)Is the joint distribution over atmospheric states

Forecasting: x = current state, y = future state
Downscaling: x = coare res. state, y = fine res. state
Spatial interpolation: x = incomplete state, y = completed state

Counterfactual/scenario: x = initial condition in scenario A, y =
forecast in scenario B

Y
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Self-supervised learning tasks

Self-supervised learning: define a training task from a dataset without an
explicit set of labels

e
< 4 ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

26



Self-supervised learning tasks

Self-supervised learning: define a training task from a dataset without an
explicit set of labels

=> “hide” some information from the network during input and network
predicts this information
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Self-supervised learning tasks

Self-supervised learning: define a training task from a dataset without an
explicit set of labels

=> “hide” some information from the network during input and network
predicts this information

14 |_| S H ; | HELH : D. Pathak, P. Krahenbuhl, J. Donahue, T.

. a Darrell, and A. A. Efros. Context encoders:
= Feature learning by inpainting. In
Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition
(CVPR), June 2016.
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Self-supervised learning tasks

Self-supervised learning: define a training task from a dataset without an
explicit set of labels

=> “hide” some information from the network during input and network
predicts this information

D. Pathak, P. Krahenbuhl, J. Donahue, T.
Darrell, and A. A. Efros. Context encoders:
Feature learning by inpainting. In
Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition
(CVPR), June 2016.

PIZHHEH )

(@) Input context

I HHEH IELH

|l

(c) Context Encoder (d) Context Encoder
(L2loss) (L2 +Adversaria loss)
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Self-supervised learning tasks

Self-supervised learning: define a training task from a dataset without an
explicit set of labels

=> “hide” some information from the network during input and network
predicts this information

L Grayscale Channel Xy Predicted Color Channels Xg

N

-~

Input Image X Predicted Image X

ab Color Channels Xg Predicted Grayscale Channel X3

R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised learning by cross-channel prediction. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.
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Self-supervised learning tasks

Self-supervised learning: define a training task from a dataset without an
explicit set of labels

=> “hide” some information from the network during input and network
predicts this information

Transformer takes sequence of words as input ((sub-)words, image
patches, local atmospheric states, ...)

=> mask some of the patches from the network during input (or remove
them entirely) and network predicts these
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Self-supervised learning tasks

house
has

green
garden

Transformer block: iterate M times

5!

attention b&-

13

skip

A\ 4

tN
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Self-supervised learning tasks

house
has

green
garden
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Self-supervised learning tasks

a Transformer
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Self-supervised learning tasks

? has

a Transformer

? garden
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Self-supervised learning tasks

My | ¢ 2
house
? has
a T ¢ T~ sampled from
green ranstormer prob. distribution of
output words
? garden -
tN tn
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Self-supervised learning tasks

« BERT (Google):1 randomly mask words from a sequence (and add some random distortions)
» Predictive masking (OpenAl):2 always mask subsequent words

My [ o
house
? has
a T ¢ T~ sampled from
green ranstormer prob. distribution of
output words
? garden -
N tn

1 Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, https://arxiv.org/abs/1810.04805
2 Radford et al. Improving Language Understanding by Generative Pre-Training, https://cdn.openai.com/research-covers/language-
unsupervised/language_understanding_paper.pdf
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https://arxiv.org/abs/1810.04805

Self-supervised learning tasks

Vision transformer: image is a small patch

Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, 2021, https://arxiv.org/abs/2010.11929
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Self-supervised learning tasks

Transformer

He et al., Masked Autoencoders Are Scalable Vision Learners, 2021, https://arxiv.org/abs/2111.06377
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Self-supervised learning tasks

Transformer

He et al., Masked Autoencoders Are Scalable Vision Learners, 2021, https://arxiv.org/abs/2111.06377
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Self-supervised learning tasks

Transformer

He et al., Masked Autoencoders Are Scalable Vision Learners, 2021, https://arxiv.org/abs/2111.06377
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Self-supervised learning tasks

Lessig et al., AtmoRep: A Stochastic Model of Atmospheric Dynamics, 2023, https://arxiv.org/abs/2308.13280
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Self-supervised learning tasks

A1 AT A 211

Lessig et al., AtmoRep: A Stochastic Model of Atmospheric Dynamics, 2023, https://arxiv.org/abs/2308.13280
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Self-supervised learning tasks

xl\

Flatland view

Y

Lessig et al., AtmoRep: A Stochastic Model of Atmospheric Dynamics, 2023, https://arxiv.org/abs/2308.13280
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Self-supervised learning tasks

wl\

Flatland view

Y

Lessig et al., AtmoRep: A Stochastic Model of Atmospheric Dynamics, 2023, https://arxiv.org/abs/2308.13280
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Self-supervised learning tasks

divergence, ml=96

-2 0 2

Lessig et al., AtmoRep: A Stochastic Model of Atmospheric Dynamics, 2023, https://arxiv.org/abs/2308.13280
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Self-supervised learning tasks

FF

Lessig et al., AtmoRep: A Stochastic Model of Atmospheric Dynamics, 2023, https://arxiv.org/abs/2308.13280

Transformer
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Self-supervised learning tasks

xl\

Zero-shot
capabilities

Y

Lessig et al., AtmoRep: A Stochastic Model of Atmospheric Dynamics, 2023, https://arxiv.org/abs/2308.13280
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Self-supervised learning tasks

xl\

Zero-shot
capabilities

Y

Lessig et al., AtmoRep: A Stochastic Model of Atmospheric Dynamics, 2023, https://arxiv.org/abs/2308.13280
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Self-supervised learning tasks

xl\

Zero-shot
capabilities

Y

Lessig et al., AtmoRep: A Stochastic Model of Atmospheric Dynamics, 2023, https://arxiv.org/abs/2308.13280
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Self-supervised learning tasks

A past | future

Zero-shot forecasting
capabilities

Y

Lessig et al., AtmoRep: A Stochastic Model of Atmospheric Dynamics, 2023, https://arxiv.org/abs/2308.13280
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Self-supervised learning tasks

Tt
capabilities

interpolation

Y

Lessig et al., AtmoRep: A Stochastic Model of Atmospheric Dynamics, 2023, https://arxiv.org/abs/2308.13280
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Self-supervised learning tasks

Tt

capabilities interpolation

Y

Lessig et al., AtmoRep: A Stochastic Model of Atmospheric Dynamics, 2023, https://arxiv.org/abs/2308.13280
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Self-supervised learning tasks

« Joined Embedding Predictive Architecture (JEPA)
« Mask but compute loss in hidden/latent space instead of by reconstructing
« Learn more abstract and robust representations

Bardes et al., Revisiting Feature Prediction for Learning Visual Representations from Video, 2024, https://scontent-cdg4-2.xx.focdn.net/v/t39.2365-
6/427986745_768441298640104_1604906292521363076_n.pdf?_nc_cat=103&ccb=1-7&_nc_sid=3c67a6&_nc_ohc=Lpq5leF5IUAXOENGb7&_nc_ht=scontent-
cdg4-2.xx&oh=00_AfCFlyd8GMJngQsG90WY-ccXwWEo00a0XgiWXZm06nd1-pw&oe=65D69EB1
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Self-supervised learning tasks

« Joined Embedding Predictive Architecture (JEPA)
« Mask but compute loss in hidden/latent space instead of by reconstructing
« Learn more abstract and robust representations

Context
encoder

EMA
Target = PSSRt gy = 00, Loss
Stop-grad

Bardes et al., Revisiting Feature Prediction for Learning Visual Representations from Video, 2024, https://scontent-cdg4-2.xx.focdn.net/v/t39.2365-
6/427986745_768441298640104_1604906292521363076_n.pdf?_nc_cat=103&ccb=1-7&_nc_sid=3c67a6&_nc_ohc=Lpq5leF5IUAXOENGb7&_nc_ht=scontent-
cdg4-2.xx&oh=00_AfCFlyd8GMJngQsG90WY-ccXwWEo00a0XgiWXZm06nd1-pw&oe=65D69EB1
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Self-supervised learning tasks

« Joined Embedding Predictive Architecture (JEPA)
« Mask but compute loss in hidden/latent space instead of by reconstructing
« Learn more abstract and robust representations

Context
encoder

Exponential ]

moving average
Target ~ PEESESEaESEaEStaplg® = 0ss
encoder — Sto;:{{grad

Bardes et al., Revisiting Feature Prediction for Learning Visual Representations from Video, 2024, https://scontent-cdg4-2.xx.focdn.net/v/t39.2365-
6/427986745_768441298640104_1604906292521363076_n.pdf?_nc_cat=103&ccb=1-7&_nc_sid=3c67a6&_nc_ohc=Lpq5leF5IUAXOENGb7&_nc_ht=scontent-
cdg4-2.xx&oh=00_AfCFlyd8GMJngQsG90WY-ccXwWEo00a0XgiWXZm06nd1-pw&oe=65D69EB1
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Self-supervised learning tasks

 Siamese networks

f f

sample 1 sample 2
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Self-supervised learning tasks

 Siamese networks

f f

sample 1 sample 2
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Self-supervised learning tasks

« Siamese networks p(A) predict (known)
similarity between
|

samples

classification head

same
network

sample 1 sample 2
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Self-supervised learning tasks

e Siamese networks I p(AL)
t

Latent representation is
used for applications —

sample 1 sample 2
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Self-supervised learning tasks

1979 t> ---> 2020

<>

At

Hoffmann and Lessig, AtmoDist: Self-supervised Representation Learning for Atmospheric Dynamics, 2022, https://arxiv.org/abs/2202.01897
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Self-supervised learning tasks

p(AY) prediction
of At
f _
I classification
R— network
[ . /, ;
. ] )
——— representation
I network
— —
— —
ERS
t
1979 w===s= i --->» 2020
>
At

Hoffmann and Lessig, AtmoDist: Self-supervised Representation Learning for Atmospheric Dynamics, 2022, https://arxiv.org/abs/2202.01897
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Self-supervised learning tasks

p(AY) prediction
of At
[ J
. t
O I classification
- e SN network
N [ . /, ;
—— )
B . | . representation
s B network
[ I
B -
ZRS

--> 2020

<>

At

Hoffmann and Lessig, AtmoDist: Self-supervised Representation Learning for Atmospheric Dynamics, 2022, https://arxiv.org/abs/2202.01897
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Self-supervised learning tasks

o Student-teacher
networks
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Self-supervised learning tasks

o Student-teacher
p(At)
networks I

f

Latent representation is
used for applications —

sample 1 sample 2
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Self-supervised learning tasks

o Student-teacher
p(At)
networks I

f

Latent representation is
used for applications —

sample 1 sample 2
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Self-supervised learning tasks

o Student-teacher
p(At)
networks I

f

Latent representation is
used for applications —

i a

sample 1 sample 2
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predict (known)
similarity between
samples

two networks so that
weaker one can learn
from the stronger one
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Self-supervised learning tasks

o Student-teacher

At
networks PAD
Latent representation is
used for applications
PP T | |
] ]
B ]
student — teacher
] ]
R I
R .
f f

sample 1 sample 2
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two networks so that
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teacher: take weighted
average of student
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Self-supervised learning tasks

o Student-teacher
networks

Latent representation is
used for applications —

!

sample 1 sample 2

e
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predict (known)
similarity between
samples

two networks so that
weaker one can learn
from the stronger one

teacher: take weighted
average of student
(exponential moving
average (EMA))
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Self-supervised learning tasks

e Student-teacher

At -
networks p(At) predict (known)

similarity between
T samples

Latent representation is
used for applications —

| ' |
two networks so that
weaker one can learn

student “~ teacher from the stronger one

teacher: take weighted
average of student
t t (exponential moving

sample 1 sample 2 average (EMA))

https://www.slideshare.net/slideshow/enact-carrot-stick/53622951
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Self-supervised learning tasks

e Student-teacher networks

Caron et al., Emerging Properties in Self-Supervised Vision Transformers, 2021, https://arxiv.org/abs/2104.14294
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Self-supervised learning tasks

« Contrastive learning
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Self-supervised learning tasks

A

A
« Contrastive learning g/ B
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Summary

« Self-supervised learning
« Overcome the limits imposed by requiring labeling of data
« Learn task-agnostic neural networks

« Essentially all of the most powerful vision and language models use
self-supervised training

* Fine-tuning for specific applications
 Increased robustness and flexibility
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Literature

* Bengio et al., Representation Learning: A Review and New Perspectives,
https://arxiv.org/abs/1206.5538

e https://ai.meta.com/blog/self-supervised-learning-the-dark-matter-of-
intelligence/

* Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding, 2018, https://arxiv.org/abs/1810.04805

« Radford et al., Improving Language Understanding by Generative Pre-
Training, 2018, https://cdn.openai.com/research-covers/language-
unsupervised/language understanding paper.pdf

* Brown et al., Language Models are Few-Shot Learners, 2020,
https://arxiv.org/abs/2005.14165.
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