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Deepmind Nowcasting predicting the future

2

Context Deep Generative Nowcast
Past 20mins Model of Rain Next 90mins
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ChatGPT happened...

ChatGPT 35 v

©

How can | help you today?

Plan a trip Write a spreadsheet formula

Explain nostalgia Explain why popcorn pops

ChatGPT can make mistakes. Consider checking im
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The Rise of Data-Driven Weather Forecasting

Experimental: AIFS (ECMWF) ML model: 500 hPa geopotential height Experimental: FourCastNet ML model: 500 hPa geopotential height and Experimental: FuXi ML model: 500 hPa geopotential height and 850
and 850 hPa temperature 850 hPa temperature hPa temperature

Experimental: GraphCast ML model: 500 hPa geopotential height and Experimental: Pangu-Weather ML model: 500 hPa geopotential height
850 hPa temperature and 850 hPa temperature
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Quick history of neural networks
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A Short History of Neural Networks

Neural Networks

(1950)
O O
Automatic
Differentiation
(1970)
Torch Library
(2002)
Scikit-Learn
Library
(2009)

Convolutional
Neural Networks
(1980)

Generative
Adversarial
Networks
(2014)

Backpropagation
(1960)
@ O
Recurrent
Networks
(1982)
Transformers
(2017)
Tensorflow
Library
(2015)
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Dense networks
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A Simple Neuron for Addition
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A Simple Neuron — Changing Weights
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A Simple Neuron — Activation Function
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A Simple Neuron — Deconstructed

Input x
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Classic Activation Function

Sigmoid Activation
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Modern Activation Functions

RelLU Activation
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A Small Neural Network
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A Deep Neural Network
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Different Combinations In Neural Networks
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Neural network training
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L earnable Parameters
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y=0(Wwe*Xx+Db)
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L earnable Parameters
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Forward Pass In Neural Networks
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Backward Pass with Numerical Optimization

Calculate Error

Stochastic Gradient Descent

Go towards minimum

Correct network with chain rule

Hopefully the global minimum
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Realistic choices during training

Loss surface usually highly irregular

Different architectures choices change surface

Take small steps toward minimum

Use averaging and momentum

— Adam optimiser

Regularisation for better optimum
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Regularisation using Dropout
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Standardisation using BatchNormalisation

S ECMWF Bl Normalise each batch of data



Loss: Cross-Entropy

Loss and Accuracy Curves Converging

Neural Network Loss
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Metric: Accuracy
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Neural Network Accuracy
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Working with Spatial Data
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Networks on Images
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2D Convolutions

Learned Convolution

Filter / Kernel
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Multiple Convolutional Kernels in a Network Layer

animatedai.github.10

o)
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

30



Convolutional Neural Networks — Overly Simplified
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Convolutional Neural Networks

» Works with Locally Connected Data, e.g.
— Photos
— Satellite data

— Weather fields

» Convolutional filters are learnt from data
« Compression changes focus of different layers

« Convolutions share weights and reduce computation
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Working with Sequential Data
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The simplest recurrent network
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Long Short-Term Memory (LSTM)
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from tf.keras.layers import LSTM
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Recurrent Neural Networks

« Work with Sequences, e.g.
— Text

— Time Series

» Contain Feedback loop
« LSTM Cells contain a state from data

» Context for prediction is limited
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Transformers
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Wednesday 10:40
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Transformers — Overly Simplified

Encoder

Block
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Decoder

Block
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Transformers — Overly Simplified
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Transformers — Overly Simplified T

Dense Network

Shortcuts

Self-Attention

Encoder
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Self-Attention working on a sentence
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Combining Concepts into
Architectures
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CNN + Dense: Classification Architecture (VGGNet-16)
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ResNet Blocks: Utilizing Shortcuts
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ReLU
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Why we use Residual Connections
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Going deep: ResNet-101
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Unet: Utilizing Compression for Encoding / Decoding
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Why we use Compression / Latent Spaces
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Graph Neural Networks
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Defining Operations on Graphs
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Image Pixels

Adjacency Matrix

Click on an image pixel to toggle its value, and see how the graph representation changes.
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Defining Operations on Graphs: Convolutions

AIFS v0.1
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Defining Operations on Graphs: Transformers

AIFS v0.21
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Conclusion
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What We Learned

* Neural Network Training

* Network Types
— Dense Neural Networks
— Convolutional Neural Networks
— Recurrent Neural Networks
— Transformers

— Graph Neural Networks

« Example Architectures
» Compression

« Shortcuts / Residual Connections
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