Neural networks and deep learning

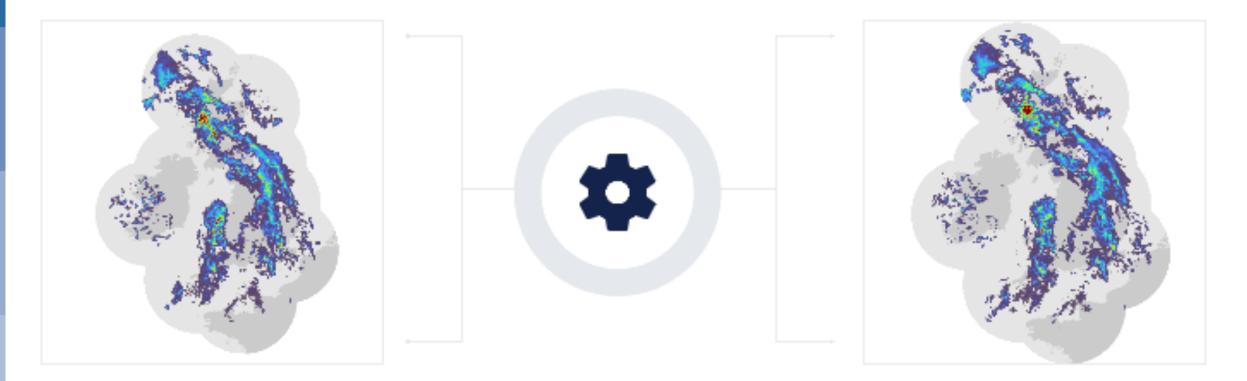
Deep Machine Learning in Weather and Climate

Jesper Dramsch

ECMWF Bonn

Jesper.Dramsch@ecmwf.int

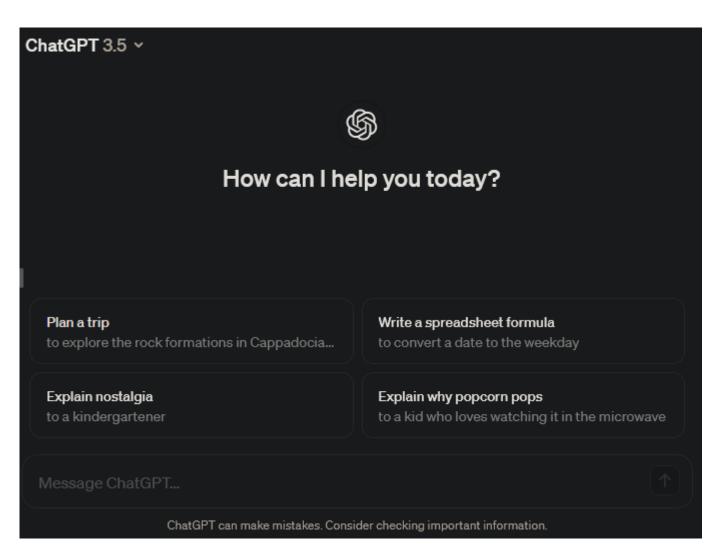
Deepmind Nowcasting predicting the future



Context Past 20mins Deep Generative Model of Rain Nowcast Next 90mins

Deepmind Nowcasting Blog 2

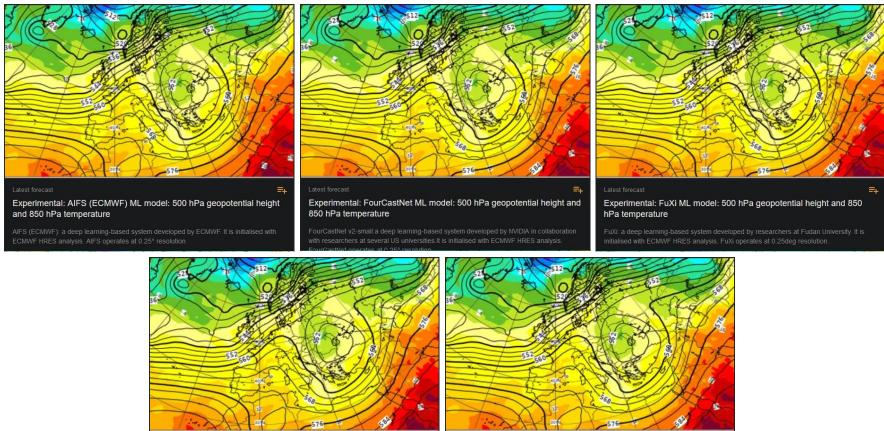
ChatGPT happened...



EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

3

The Rise of Data-Driven Weather Forecasting



Experimental: GraphCast ML model: 500 hPa geopotential height and 850 hPa temperature

GraphCast (Google DeepMind): a deep learning-based system developed by Google DeepMind.It is initialised with ECMWF HRES analysis. GraphCast operates at 0.25° Latest forecast ≡ Experimental: Pangu-Weather ML model: 500 hPa geopotential height and 850 hPa temperature

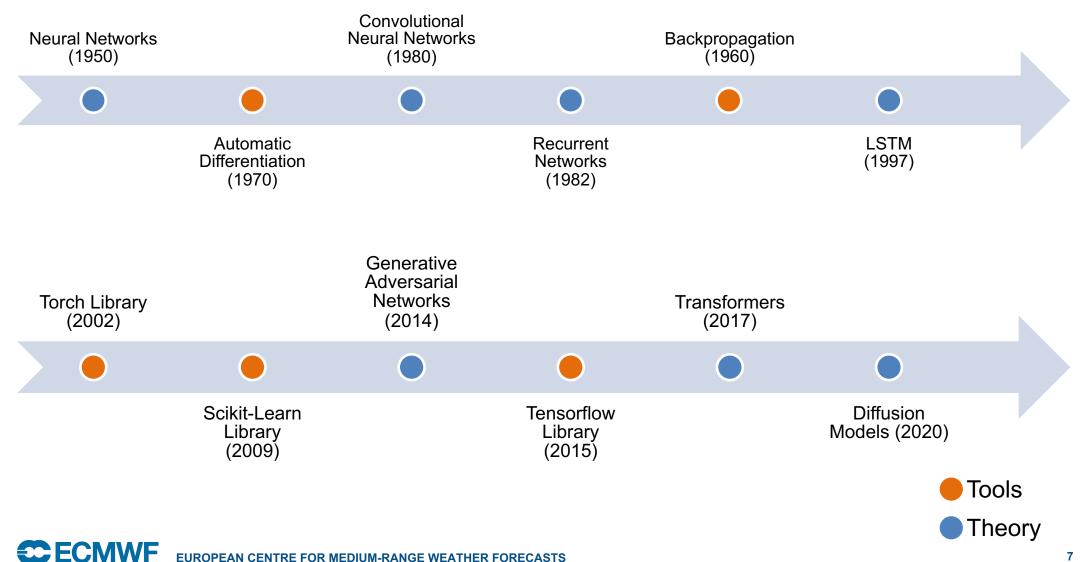
Pangu-Weather: a deep learning-based system developed by Huawel. It is initialised ECMWF HRES analysis. Pangu-Weather operates at 0.25° resolution.

Outline

- Quick history of neural networks
- Dense networks
- Neural network training and GPUs
- Convolutional neural networks
- Recurrent networks
- Transformers

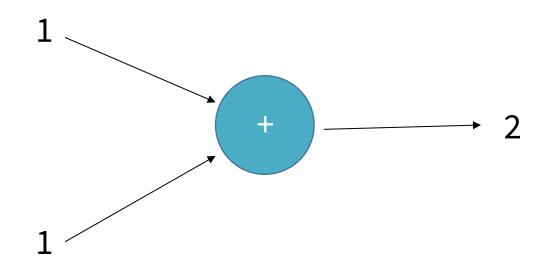
Quick history of neural networks

A Short History of Neural Networks

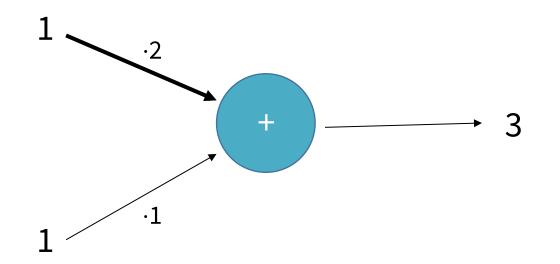


Dense networks

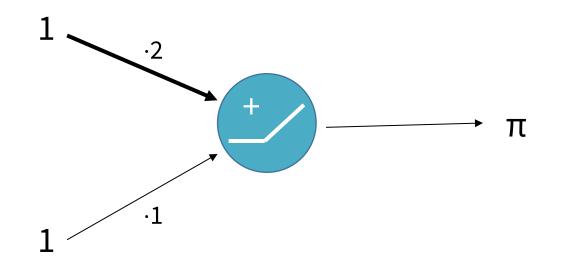
A Simple Neuron for Addition



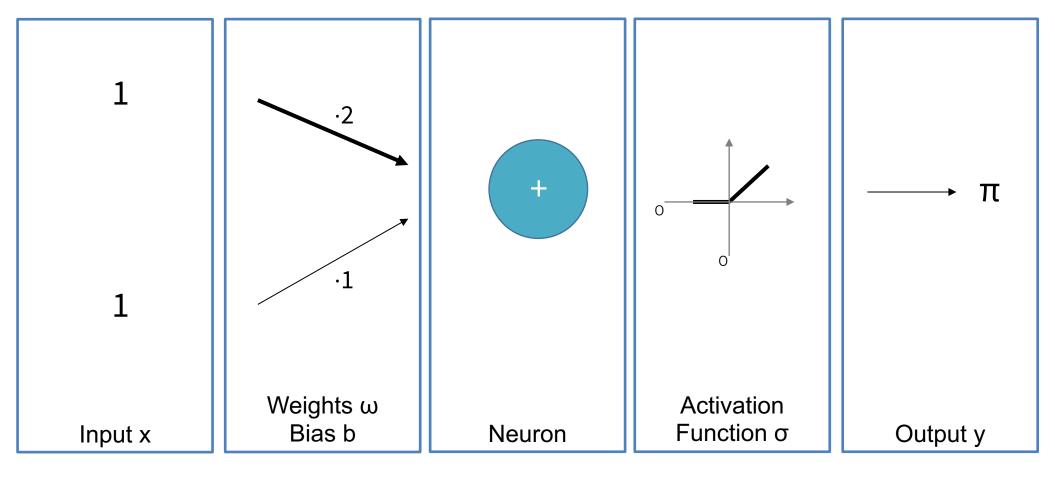
A Simple Neuron – Changing Weights



A Simple Neuron – Activation Function

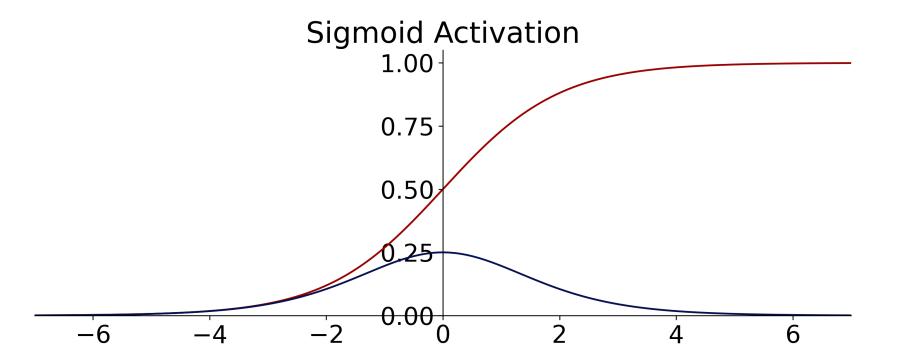


A Simple Neuron – Deconstructed

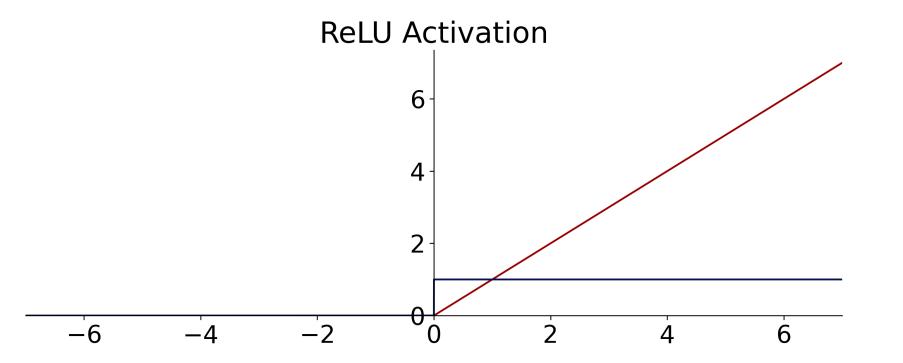


 $y = \sigma (\omega \cdot x + b)$

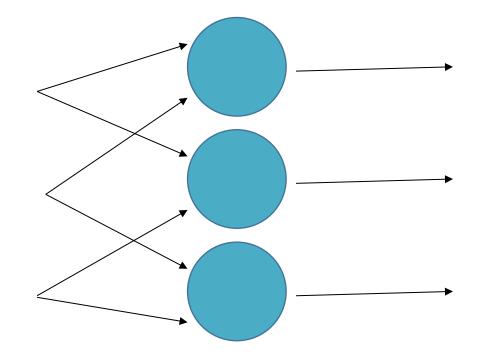
Classic Activation Function



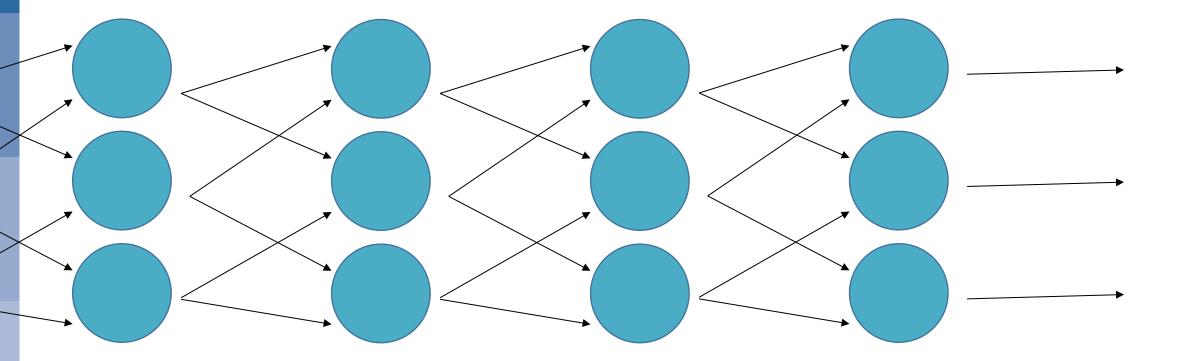
Modern Activation Functions



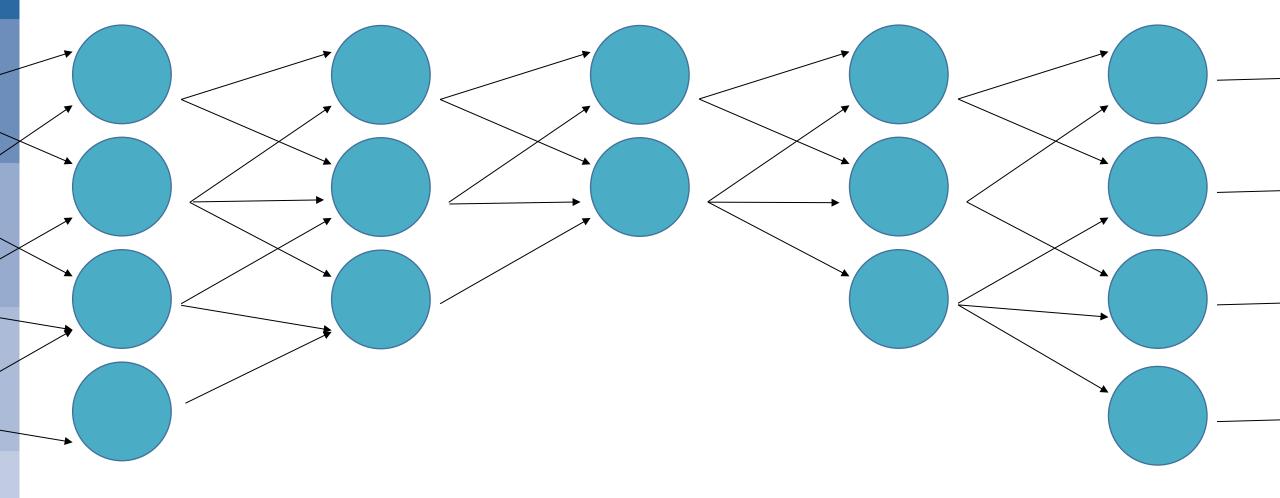
A Small Neural Network



A Deep Neural Network

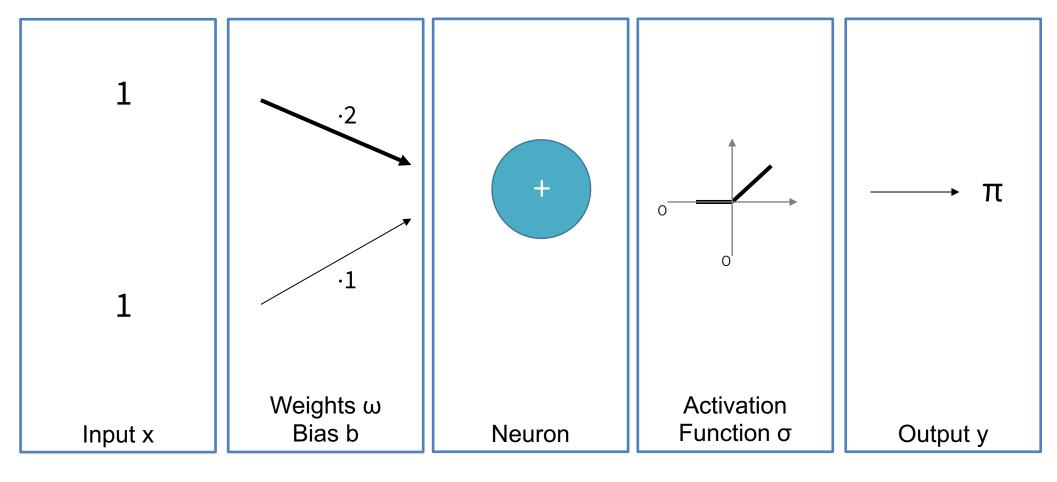


Different Combinations In Neural Networks



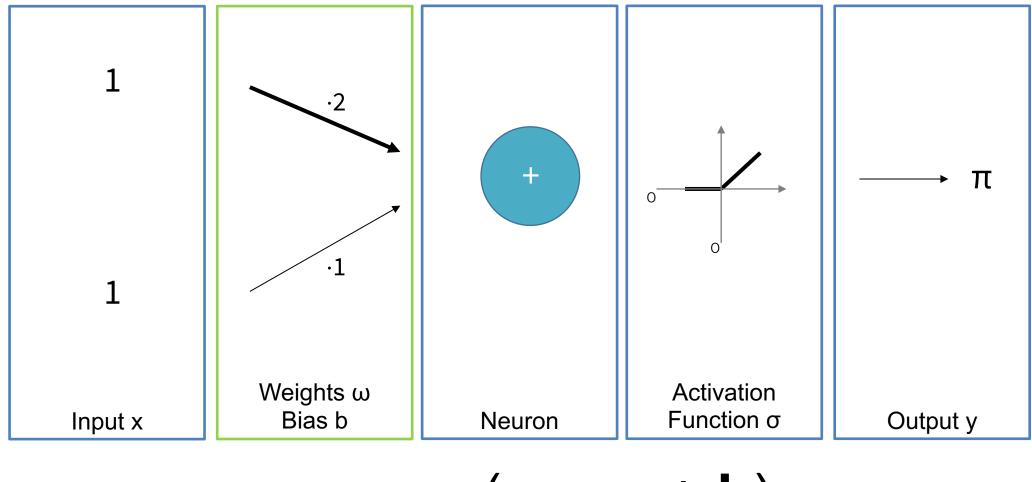
Neural network training

Learnable Parameters



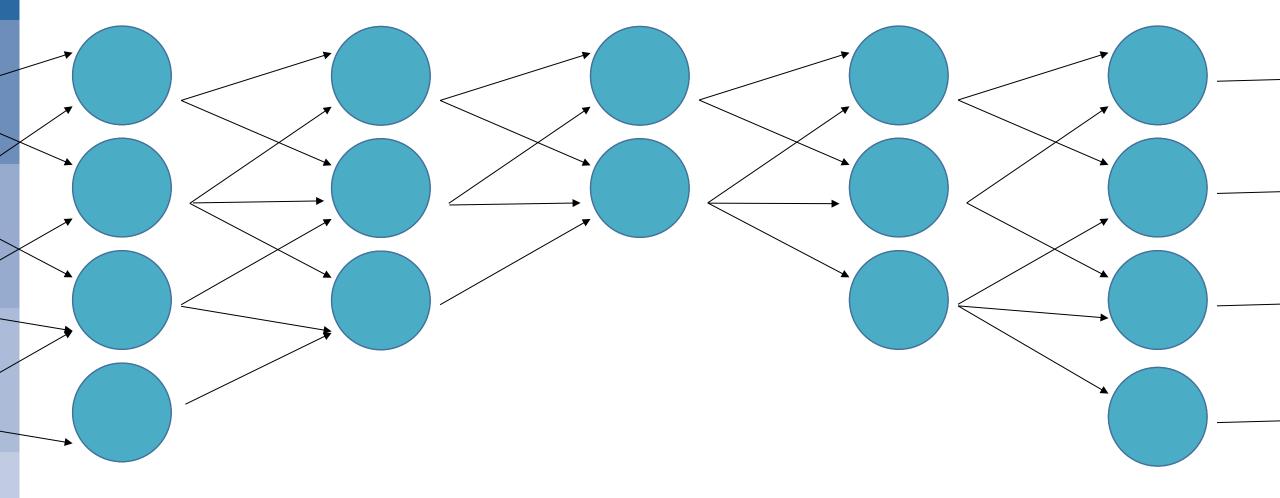
 $y = \sigma (\omega \cdot x + b)$

Learnable Parameters



 $y = \sigma (\boldsymbol{\omega} \cdot x + \boldsymbol{b})$

Forward Pass In Neural Networks

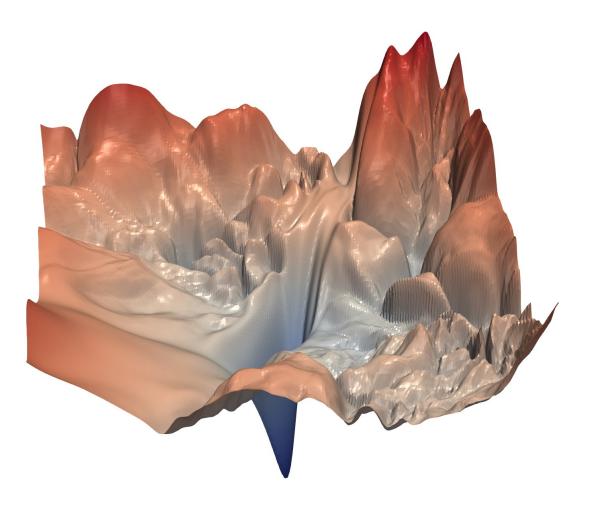


Backward Pass with Numerical Optimization

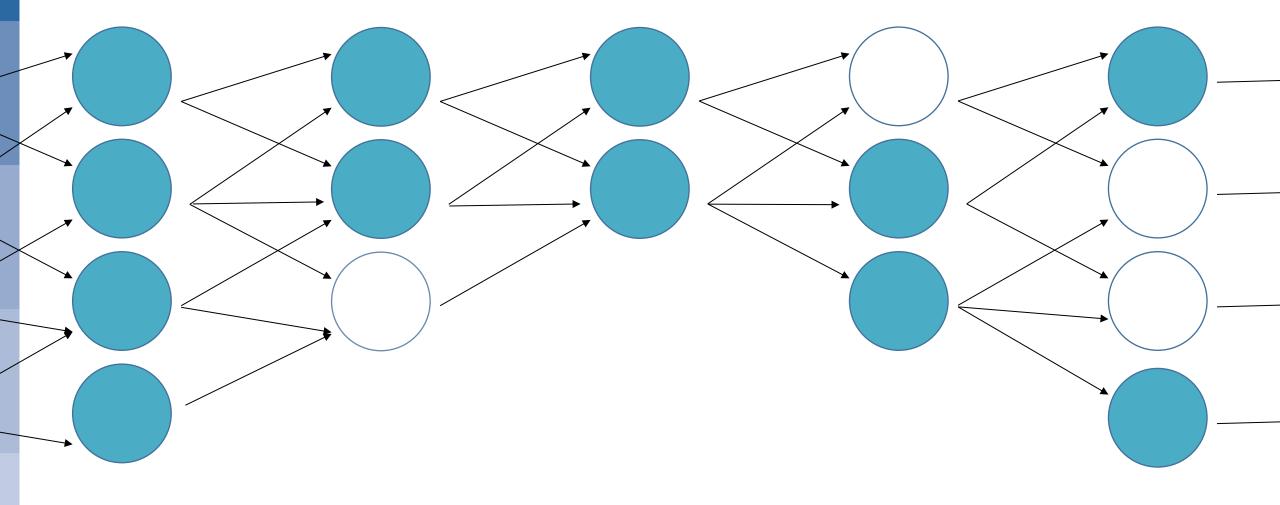
 Calculate Error Stochastic Gradient Descent • Go towards minimum 5.00 7.33 · Correct network with chain rule • Hopefully the global minimum **C**ECMWF

Realistic choices during training

- Loss surface usually highly irregular
- Different architectures choices change surface
- Take small steps toward minimum
- Use averaging and momentum
 - Adam optimiser
- Regularisation for better optimum

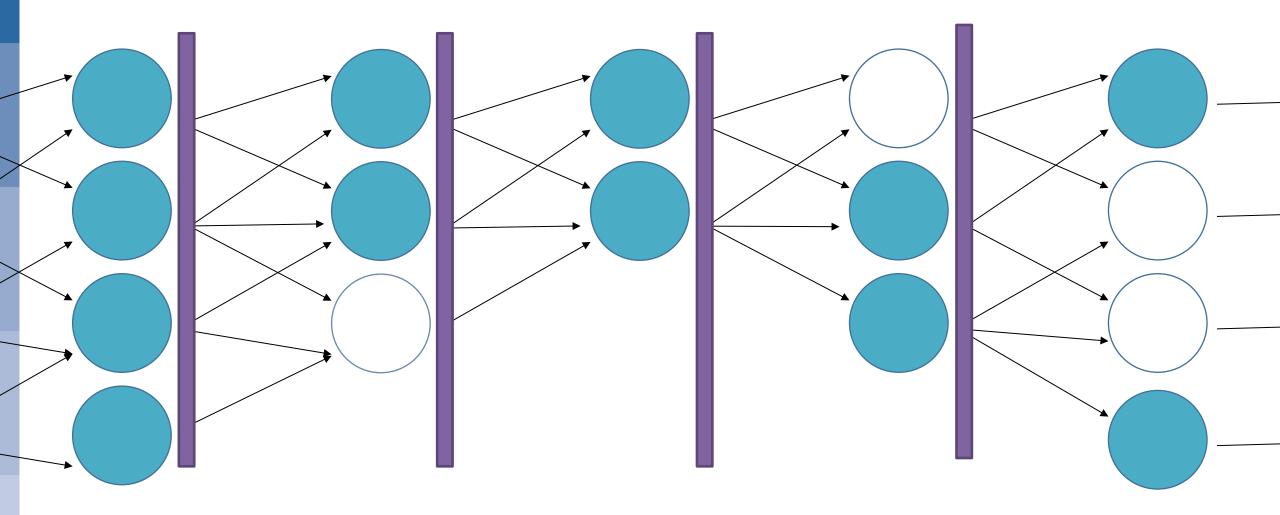


Regularisation using Dropout



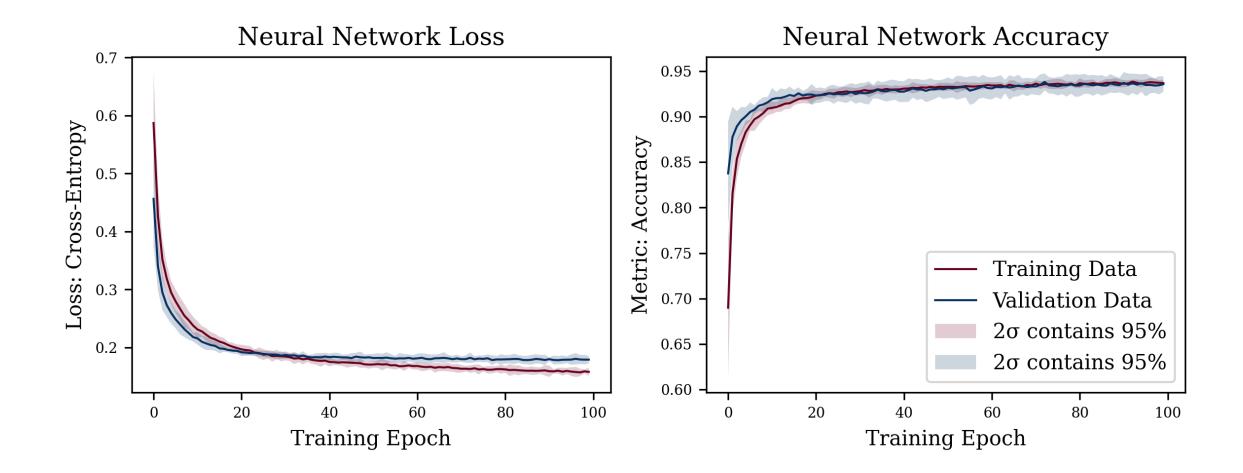
Neuron switched off

Standardisation using BatchNormalisation



Normalise each batch of data

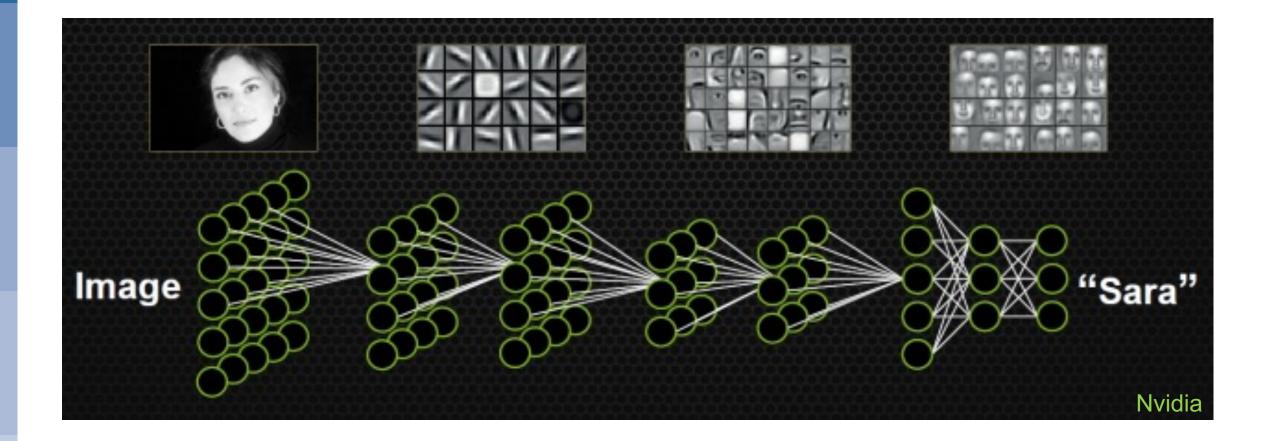
Loss and Accuracy Curves Converging



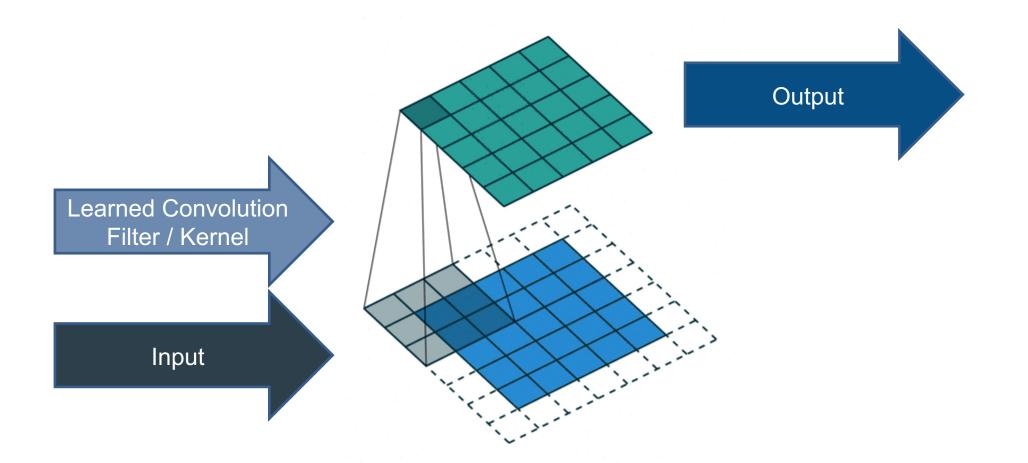
Working with Spatial Data

Wednesday 09:00

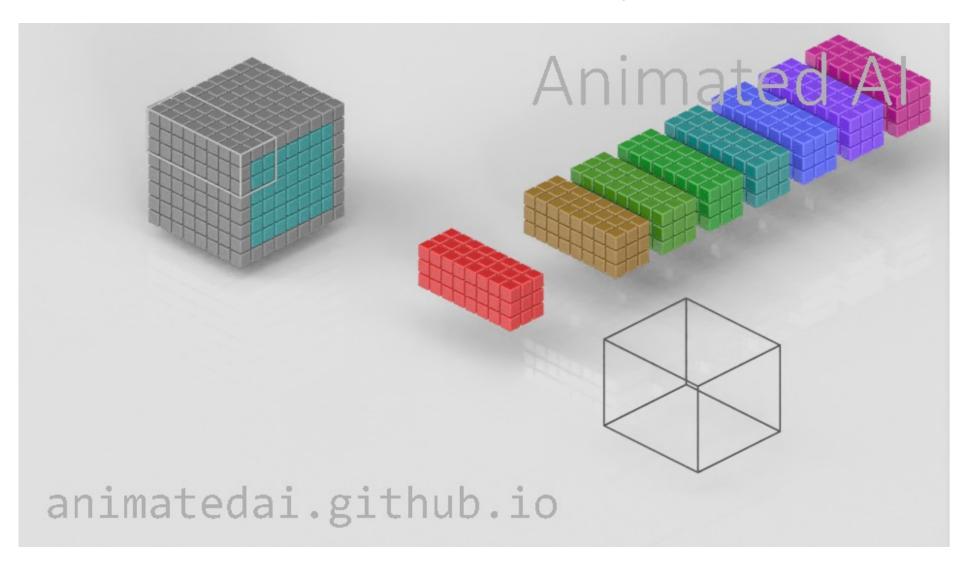
Networks on Images



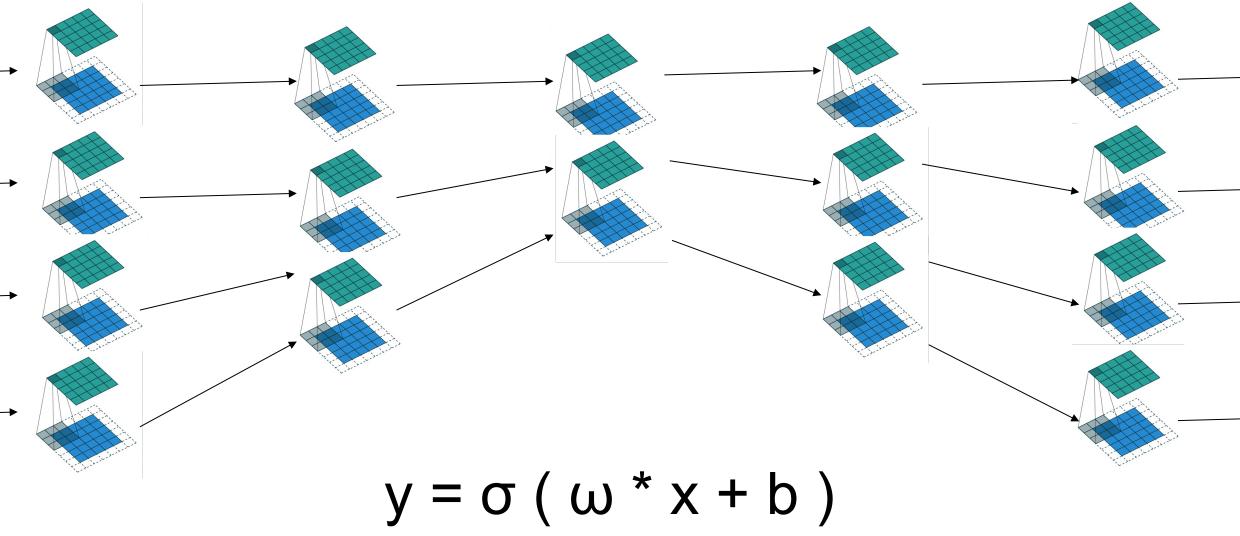
2D Convolutions



Multiple Convolutional Kernels in a Network Layer



Convolutional Neural Networks – Overly Simplified

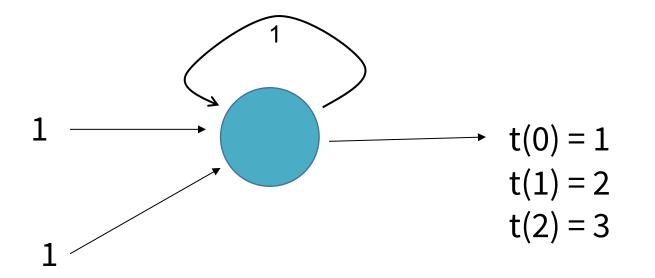


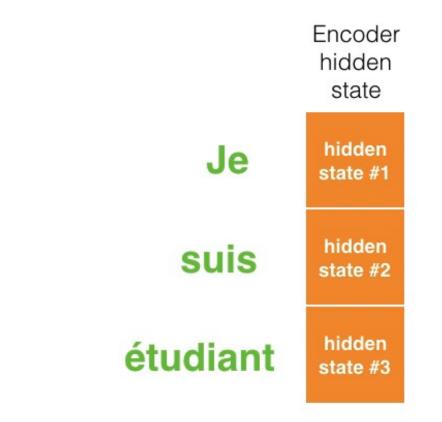
Convolutional Neural Networks

- Works with Locally Connected Data, e.g.
 - Photos
 - Satellite data
 - Weather fields
- Convolutional filters are learnt from data
- Compression changes focus of different layers
- Convolutions share weights and reduce computation

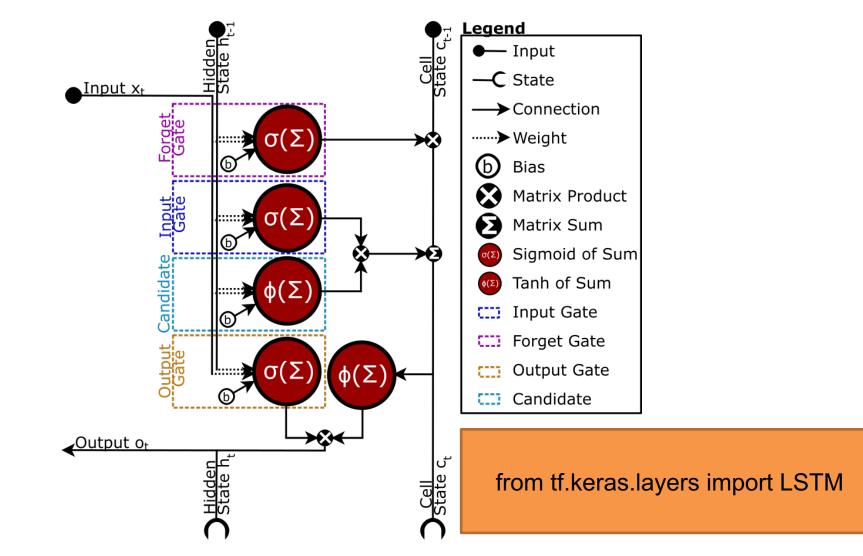
Working with Sequential Data

The simplest recurrent network





Long Short-Term Memory (LSTM)

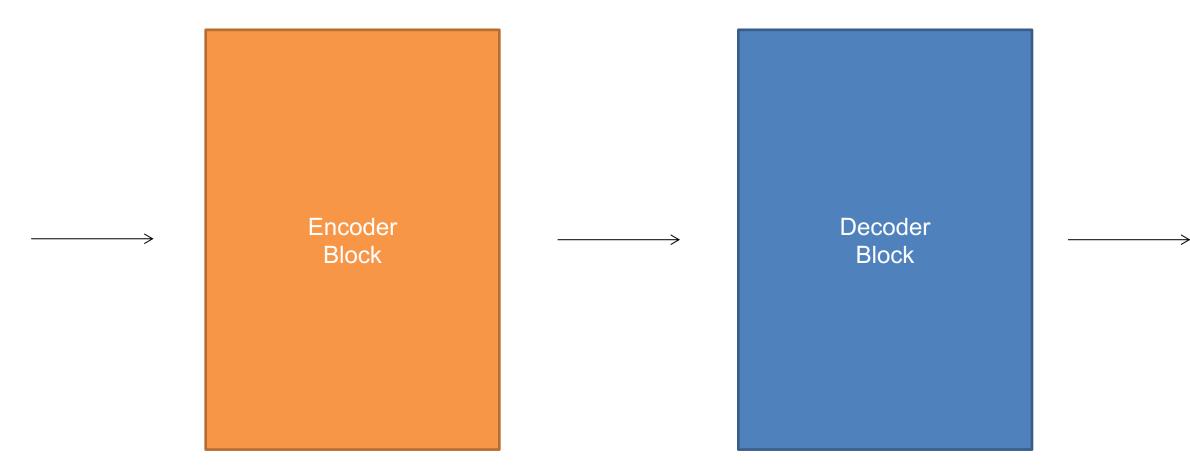


Recurrent Neural Networks

- Work with Sequences, e.g.
 - Text
 - Time Series
- Contain Feedback loop
- LSTM Cells contain a state from data
- Context for prediction is limited

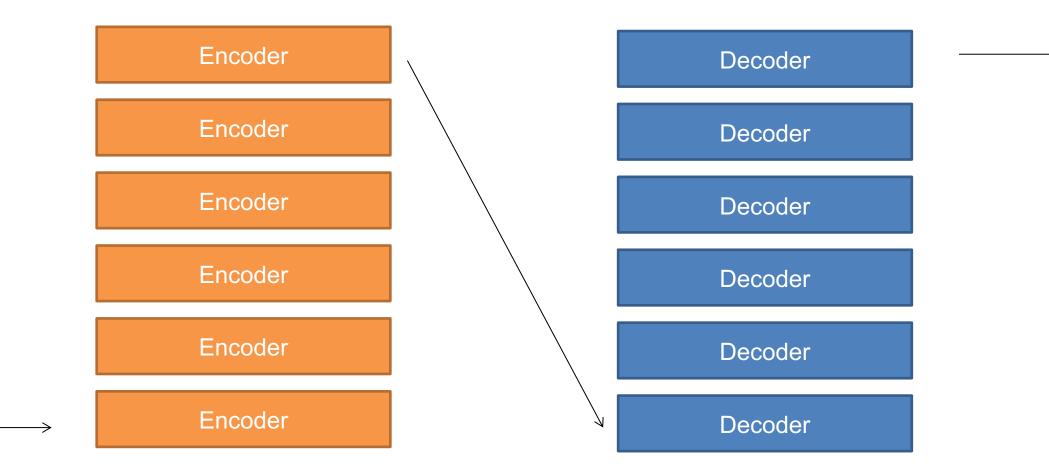
Transformers

Transformers – Overly Simplified

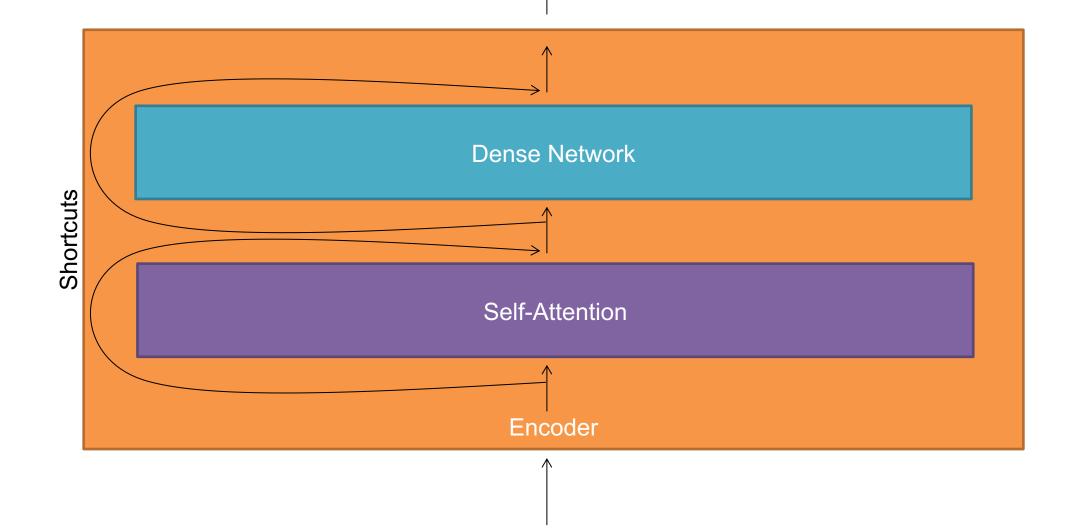


EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

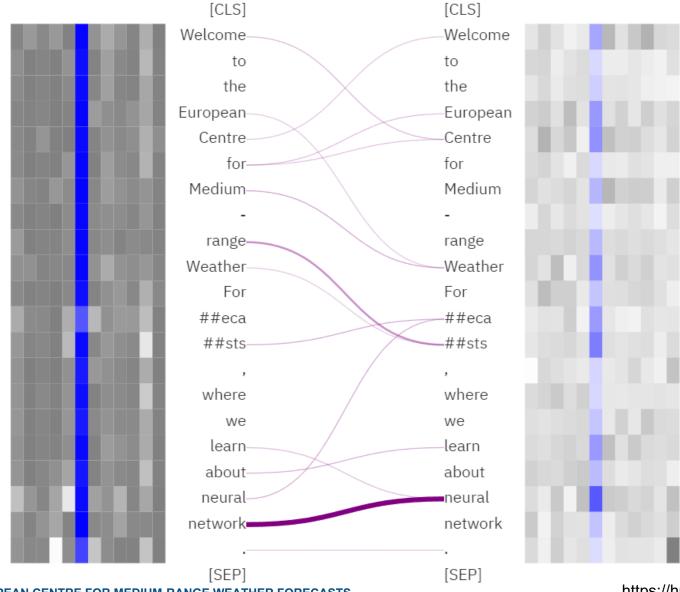
Transformers – Overly Simplified



Transformers – Overly Simplified



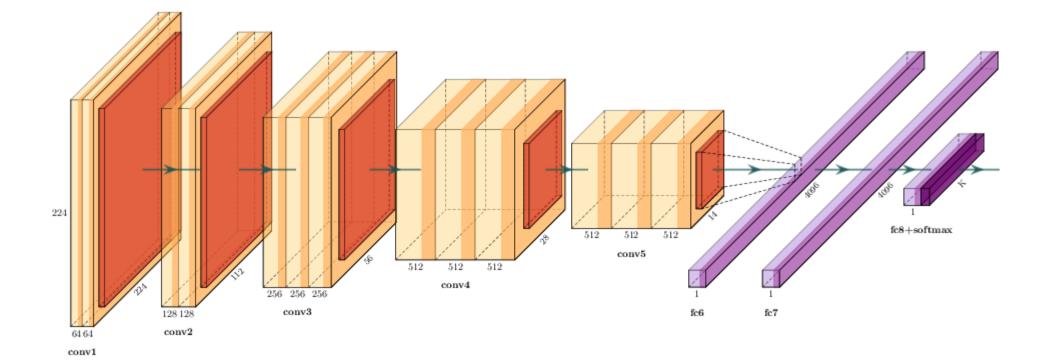
Self-Attention working on a sentence



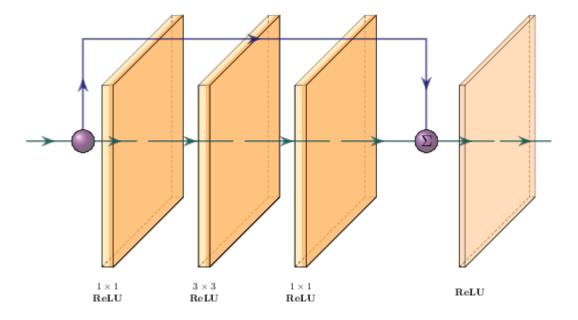
EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Combining Concepts into Architectures

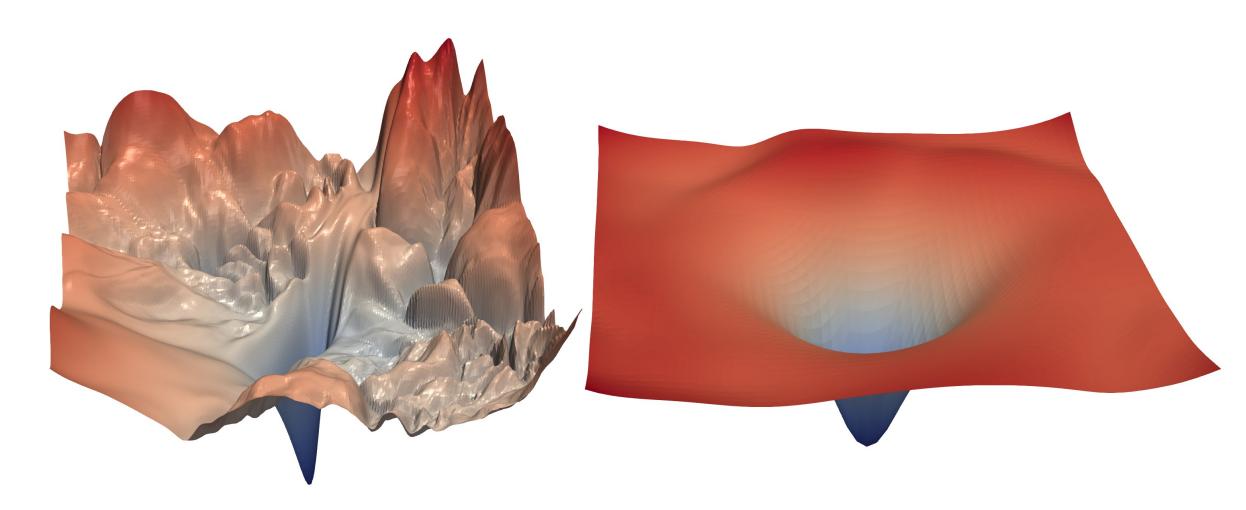
CNN + Dense: Classification Architecture (VGGNet-16)



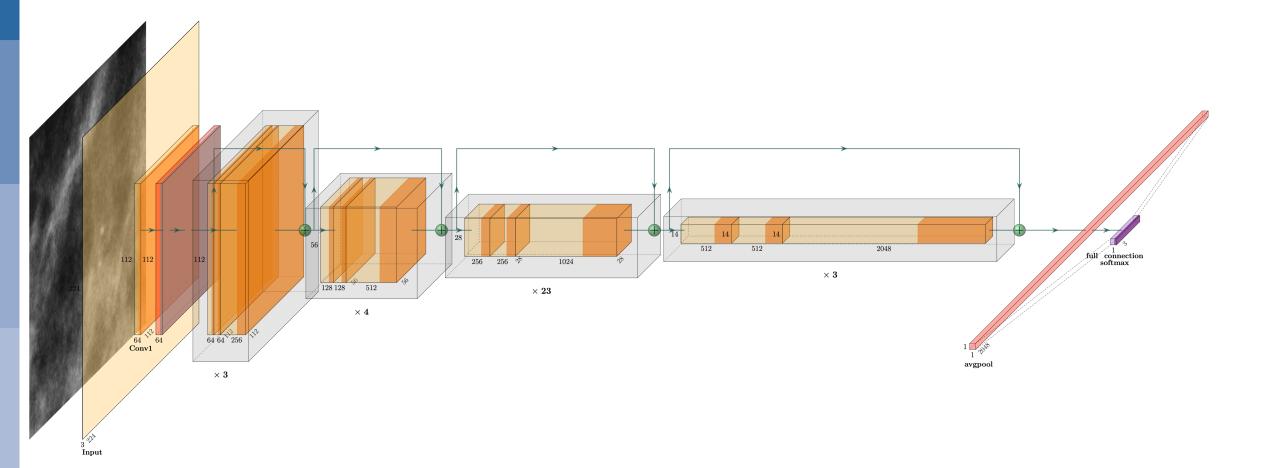
ResNet Blocks: Utilizing Shortcuts



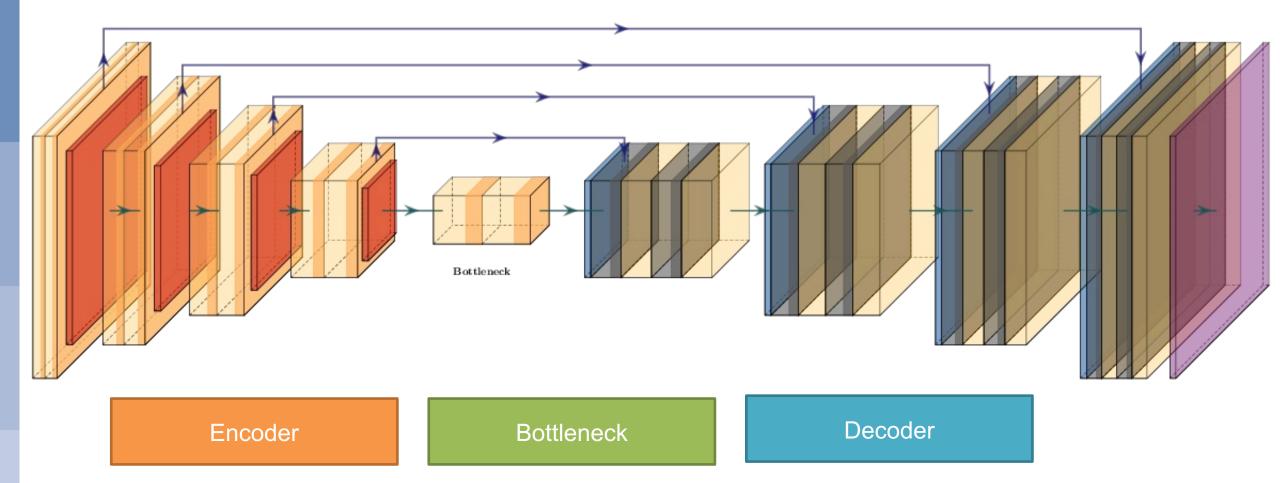
Why we use Residual Connections



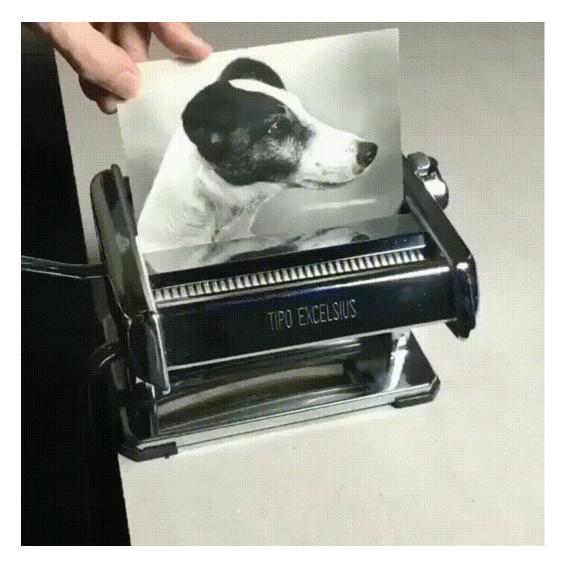
Going deep: ResNet-101



Unet: Utilizing Compression for Encoding / Decoding



Why we use Compression / Latent Spaces



Graph Neural Networks

Defining Operations on Graphs

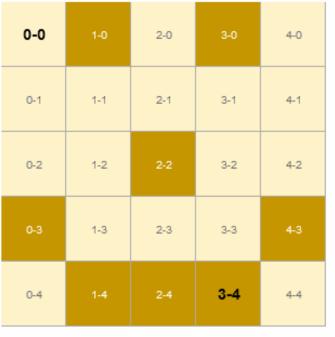


Image Pixels

Adjacency Matrix

0-0

4-0

0-1

1-1

2-1 3-1 4-1 0-2 1-2

2-2

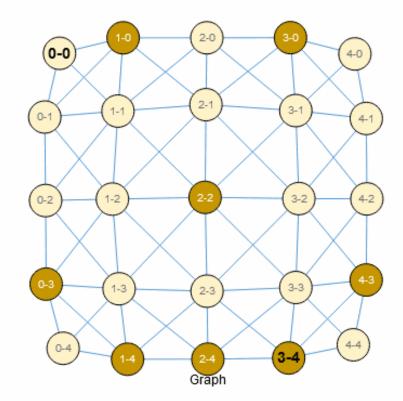
3-2 4-2 0-3 1-3

2-3 3-3

4-3 0-4 1-4

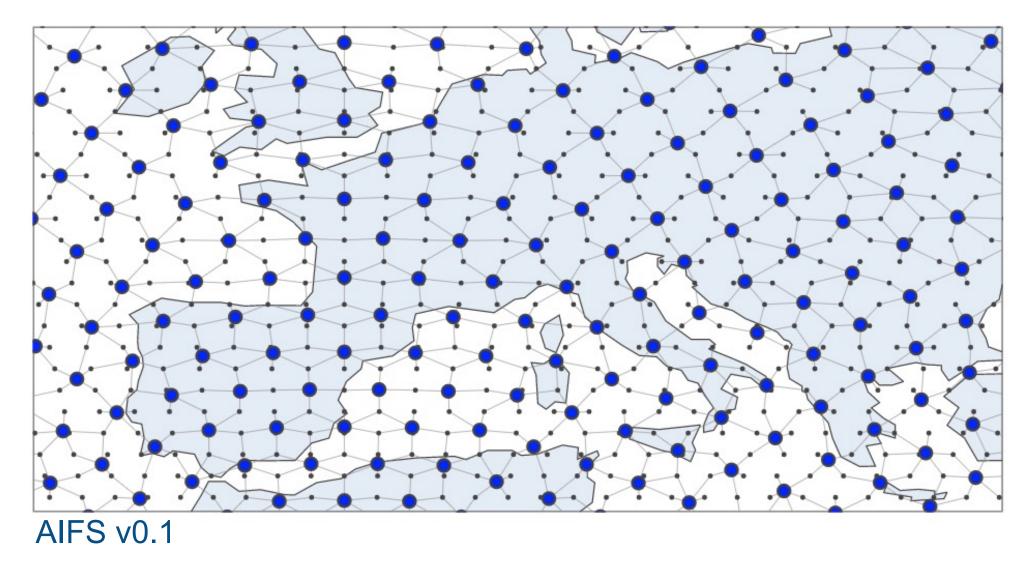
2-4 3-4

4-4



Click on an image pixel to toggle its value, and see how the graph representation changes.

Defining Operations on Graphs: Convolutions



Defining Operations on Graphs: Transformers

AIFS v0.21

Conclusion

What We Learned

- Neural Network Training
- Network Types
 - Dense Neural Networks
 - Convolutional Neural Networks
 - Recurrent Neural Networks
 - Transformers
 - Graph Neural Networks
- Example Architectures
- Compression
- Shortcuts / Residual Connections