Machine learning validation

Evaluating ML models and avoiding leakage

Jesper Dramsch

ECWMF Jesper.Dramsch@ecmwf.int

Motivation

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

How do we ensure our models work on unseen data in the future?

Outline

- Basic Validation Strategies
- Imbalanced and Heterogeneous Data
- Correlated and Connected Data
- Data, Target, and Concept Drift
- Practical considerations in Snooping and Data Leakage
- Baseline Methods and Model Interpretation

Basic Validation Strategies

Obtaining Data to Test On

Labelled Dataset

Training Data Validation Data

Training Data	Validation Data	Test Data
---------------	--------------------	-----------

Validation on Small Dataset

Labelled Dataset

Training Data	Validation Data
---------------	-----------------

Training Data	Validation Data	Test Data
---------------	--------------------	-----------

Cross-Validation

Imbalanced and Heterogeneous Data

Examples for Imbalanced Data

Class Imbalance

Why not use Random Sampling like before?

Entire Validation data is in Class II and III & Class III isn't in Training data Result: Terrible Validation Score and Model hasn't seen Class III

Entire Validation data is in Class I

Result: Great Validation Score but no validation of Class II & III at all

Stratification for Imbalanced Data

Correlated and Connected Data

Time Series Data

- Random Splits on Time Series Data equates to Interpolation
- Bad on standard time series problems
- Devastating on forecasting problems

Validation on Time Series Data

Validation of Geospatial Data

- Geospatial Data Examples
 - Stations
 - Satellite Data
 - Weather Radar
- Geospatial Data is spatially correlated
- Problems with random split of data:
 - Clustering of Validation Locations
 - Overlap of Validation and Training Locations

ECROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Validation of Geospatial Data

- Geospatial Data Examples
 - Stations
 - Satellite Data
 - Weather Radar
- Geospatial Data is spatially correlated
- Problems with random split of data:
 - Clustering of Validation Locations
 - Overlap of Validation and Training Locations

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Data, Target, and Concept Drift

Training Distribution Online Distribution

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Data Drift

- Changes of Input Data
 - Also called covariate shift
- Examples:
 - Change in global temperature
 - Users of social media platform growing older
- Mitigation Strategies:
 - Measure distribution of input data
 - Continuous: Kolmogorov-Smirnov test
 - Categorical: Chi-squared test
 - Periodic retraining of models in production

Why periodic retraining?

Target Drift

- Changes in Target Data
- Examples:
 - Natural changes, e.g. change of coastlines through erosion
 - Change of Categories, e.g. Regulatory Changes
- Mitigation Strategies:
 - Risk Assessment for Category Changes
 - Flexible Production Pipelines
 - Monitoring of Target Data Distribution
 - Retraining New Model on New Target Definition

Concept Drift

Concept Drift

- Change of Relationship between Input and Output data
- Example:
 - Rayleigh Scattering to Mie-Scattering
 - Shopping Behaviour in April 2020
- Mitigation Strategy:
 - Automatic Monitoring of Model Performance
 - Set Up Alerts
 - Be Prepared to Take Model Offline

Practical considerations in Snooping and Data Leakage

Data Leakage "Anachronisms"

Knowns at Training Time

Knowns at Test Time

Examples of Leaking Features in Tabular Data

Possible Error: Image Artifacts

Possible Error: Normalizing on Test Data

Comparison of actual and predicted stock prices for XGBoost

Possible Error: Data Augmentation & Duplicates in Training & Test Set

Training Data

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Test Data

Possible Error: Cumulative Data with Temporal Leakage

Baseline Methods and Model Interpretation

Baseline Models

- Build Machine Learning Baselines
 - Linear Regression
 - Random Forests
 - SVM
- Consult with Domain Experts
 - Compare with existing Model Performance
 - Use Explainability to Discuss Model Interpretation
- Verify against Benchmarks and Established Models

Feature Importance for Model Interpretation

Feature Importance for Model Interpretation

Iteratively Scramble Feature

Evaluate Importance

XGBoost Feature Importance

Visualizing Single Predictions

Saliency Maps

Explore Attention Maps

What We Learned

- Generalization & Overfitting
- Random Splits into Training, Validation & Test Set
- Grouped Splitting of Spatially Correlated Data
- Time Series Splits of Temporally Correlated Data
- Various Modes of Drift
- Possible Pitfalls During Pre-Processing and Data Preparation
- Baseline Models
- Model Interpretability