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How do we ensure 
our models work 
on unseen data 
in the future?
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Outline

• Basic Validation Strategies

• Imbalanced and Heterogeneous Data

• Correlated and Connected Data

• Data, Target, and Concept Drift

• Practical considerations in Snooping and Data Leakage

• Baseline Methods and Model Interpretation
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Basic Validation Strategies
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Obtaining Data to Test On
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Validation on Small Dataset
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Cross-Validation
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Imbalanced and Heterogeneous Data
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Examples for Imbalanced Data
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Class Imbalance
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Why not use Random Sampling like before?
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Labelled Dataset

I II III
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Training 
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Entire Validation data is in Class II and III & Class III isn‘t in Training data
Result: Terrible Validation Score and Model hasn‘t seen Class III

Entire Validation data is in Class I 
Result: Great Validation Score but no validation of Class II & III at all
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Stratification for Imbalanced Data
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Labelled Dataset
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Correlated and Connected Data
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Time Series Data
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• Random Splits on Time Series Data equates to Interpolation

• Bad on standard time series problems

• Devastating on forecasting problems
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Validation on Time Series Data
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Validation of Geospatial Data
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• Geospatial Data Examples

– Stations

– Satellite Data

– Weather Radar

• Geospatial Data is spatially correlated

• Problems with random split of data:

– Clustering of Validation Locations

– Overlap of Validation and Training Locations
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Validation of Geospatial Data
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• Geospatial Data Examples

– Stations

– Satellite Data

– Weather Radar

• Geospatial Data is spatially correlated

• Problems with random split of data:

– Clustering of Validation Locations

– Overlap of Validation and Training Locations
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Data, Target, and Concept Drift
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Data Drift
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Data Drift

• Changes of Input Data

– Also called covariate shift

• Examples:

– Change in global temperature

– Users of social media platform growing older

• Mitigation Strategies:

– Measure distribution of input data

• Continuous: Kolmogorov-Smirnov test

• Categorical: Chi-squared test

– Periodic retraining of models in production
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Why periodic retraining?
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Target Drift
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Target Drift

• Changes in Target Data

• Examples:

– Natural changes, e.g. change of coastlines through erosion

– Change of Categories, e.g. Regulatory Changes

• Mitigation Strategies:

– Risk Assessment for Category Changes

– Flexible Production Pipelines

– Monitoring of Target Data Distribution

– Retraining New Model on New Target Definition
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Concept Drift
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Concept Drift

• Change of Relationship between Input and Output data

• Example:

– Rayleigh Scattering to Mie-Scattering

– Shopping Behaviour in April 2020

• Mitigation Strategy:

– Automatic Monitoring of Model Performance

– Set Up Alerts 

– Be Prepared to Take Model Offline
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Practical considerations in 
Snooping and Data Leakage
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Data Leakage “Anachronisms”
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Knowns at Training Time Knowns at Test Time
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Examples of Leaking Features in Tabular Data
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Leaky Training Feature Target Data

Monthly Income       Yearly Salary

   Minutes Late      Probability of Lateness

Number Late Payments      Probability of Default

 

Target Leakage in Machine Learning, Guts 2018
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Possible Error: Image Artifacts
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Possible Error: Normalizing on Test Data
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Possible Error: Data Augmentation & Duplicates in Training & Test Set
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Training Data Test Data
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Possible Error: Cumulative Data with Temporal Leakage
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Baseline Methods and Model Interpretation
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Baseline Models

• Build Machine Learning Baselines

– Linear Regression

– Random Forests

– SVM

• Consult with Domain Experts

– Compare with existing Model Performance

– Use Explainability to Discuss Model Interpretation

• Verify against Benchmarks and Established Models
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Feature Importance for Model Interpretation
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Feature Importance for Model Interpretation
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XGBoost Feature Importance
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Visualizing Single Predictions
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Saliency Maps
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Explore Attention Maps
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What We Learned

• Generalization & Overfitting

• Random Splits into Training, Validation & Test Set

• Grouped Splitting of Spatially Correlated Data

• Time Series Splits of Temporally Correlated Data

• Various Modes of Drift

• Possible Pitfalls During Pre-Processing and Data Preparation

• Baseline Models

• Model Interpretability
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