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How do we ensure
our models work
Oon unseen data
In the future?
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Outline

Basic Validation Strategies

Imbalanced and Heterogeneous Data

Correlated and Connected Data

Data, Target, and Concept Drift

Practical considerations in Snooping and Data Leakage

Baseline Methods and Model Interpretation
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Basic Validation Strategies
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Obtaining Data to Test On

Labelled Dataset

Training Data Validation Data
Training Data NElIESEON Test Data
Data
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Validation on Small Dataset

Labelled Dataset

Training Data Validation Data
Training Data NEIESION Test Data
Data
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Cross-Validation

Labelled Dataset

Fold 1 Fold 2 Fold 3 Fold 4
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Imbalanced and Heterogeneous Data
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Examples for Imbalanced Data
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Class Imbalance
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Why not use Random Sampling like before?

Labelled Dataset

Data Data Data Data Data

Entire Validation data is in Class Il and lll & Class lll isn‘t in Training data
Result: Terrible Validation Score and Model hasn‘t seen Class ll|

Data Data Data Data Data

Entire Validation data is in Class |
Result: Great Validation Score but no validation of Class |l & Ill at all
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Stratification for Imbalanced Data

Labelled Dataset
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Correlated and Connected Data
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Time Series Data

Time Series Data
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* Random Splits on Time Series Data equates to Interpolation
» Bad on standard time series problems

» Devastating on forecasting problems
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Validation on Time Series Data

Time Series Dataset

Training Data NEIEEON Test Data
Data
Training Data NEIESOn Test Data
Data
Training Data NEIESIOn Test Data
BEF]
Training Data NElIESEON Test Data
Data
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Validation of Geospati

» Geospatial Data Examples

— Stations

— Satellite Data

— Weather Radar

» Geospatial Data is spatially correlated

* Problems with random split of data:
— Clustering of Validation Locations

— Overlap of Validation and Training Locations

-
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Data, Target, and Concept Drift
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Data Drift

“ Training Distribution = Online Distribution
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Data Drift

« Changes of Input Data

— Also called covariate shift

* Examples:
— Change in global temperature

— Users of social media platform growing older

 Mitigation Strategies:

— Measure distribution of input data
« Continuous: Kolmogorov-Smirnov test

« Categorical: Chi-squared test

— Periodic retraining of models in production
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Why periodic retraining?

Static models Refreshed models

Model Quality
Model Quality

Time Time
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Target Drift
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Target Drift

* Changes in Target Data

* Examples:
— Natural changes, e.g. change of coastlines through erosion
— Change of Categories, e.g. Regulatory Changes
 Mitigation Strategies:
— Risk Assessment for Category Changes
— Flexible Production Pipelines
— Monitoring of Target Data Distribution

— Retraining New Model on New Target Definition
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Concept Dirift

Before

After
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Concept Dirift

» Change of Relationship between Input and Output data

« Example:
— Rayleigh Scattering to Mie-Scattering

— Shopping Behaviour in April 2020

» Mitigation Strategy:
— Automatic Monitoring of Model Performance
— Set Up Alerts

— Be Prepared to Take Model Offline
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Practical considerations in
Snooping and Data Leakage
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Data Leakage “Anachronisms”

Knowns at Training Time | Knowns at Test Time
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Examples of Leaking Features in Tabular Data

Leaky Training Feature Target Data

EE——) Yearly Salary
Minutes Late — Probability of Lateness

Number Late Payments — Probability of Default

Monthly Income
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Possible Error: Image Artifacts
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Possible Error: Normalizing on Test Data

Comparison of actual and predicted stock prices for XGBoost
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Possible Error: Data Augmentation & Duplicates in Training & Test Set

Training Data Test Data
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Possible Error: Cumulative Data with Temporal Leakage

Cumulative Time Series Data
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Baseline Methods and Model Interpretation
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Baseline Models

 Build Machine Learning Baselines
— Linear Regression
— Random Forests
— SVM
» Consult with Domain Experts
— Compare with existing Model Performance

— Use Explainability to Discuss Model Interpretation

« Verify against Benchmarks and Established Models
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Feature Importance for Model Interpretation
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Feature Importance for Model Interpretation

Trained Model
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XGBoost Feature Importance

xgboost.plot_importance(model, importance_type="gain")

Capital Gain = 23.07866178962886
Education-Num === 14.326016547926464
Capital Loss === 0.219532992392287
Age === 4.773337024835082
Occupation === 4.746887365779004
Hours per week === 4.613237907786908
Sex === 4.350914094964369
Marital Status = 3.7161387677874953
Workclass == 3.4131175725999188
Race == 3.2917444410531
Country = 3.0411901955214717

Features

59.65696346322503
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Visualizing Single Predictions

[8]: shap.force plot(explainer.expected value, shap values[0,:], X display.iloc[@,:])

[8]: higher Z lower
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Saliency Maps
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Explore Attention Maps
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What We Learned

» Generalization & Overfitting
* Random Splits into Training, Validation & Test Set
» Grouped Splitting of Spatially Correlated Data

» Time Series Splits of Temporally Correlated Data

Various Modes of Drift

Possible Pitfalls During Pre-Processing and Data Preparation

Baseline Models

Model Interpretability
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