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Data-driven weather forecasts
The future of weather forecasting?

Matthew Chantry
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What are we going to explore?
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How are data-driven models trained?

What datasets are used?

What architectures are used, and why?

What are the current strengths/weaknesses?

Are data-driven models physical?

Other approaches for ML forecasting



Keisler - GraphNN 
1°, competitive 
with GFS

NVIDIA – 
FourCastNet 
Fourier+ , 0.25°
O(104) faster & 
more energy 
efficient than IFS

Feb 2022
Full medium-range NWP

Nov 2022
Tropical cyclones

Dec 2022
Extensive predictions

Huawei – 
PanguWeather
0.25° hourly 
product

“More 
accurate 
tracks” than 
the IFS.

Deepmind – 
GraphCast
0.25° 6-hour

Many variables 
and pressure 
levels with 
comparable skill 
to IFS.

3

Jan 2023
Global & Limited Area

Microsoft – 
ClimaX

Forecasting 
various lead-
times at various 
resolutions, both 
globally and 
regionally

Apr 2023
7-day+ scores improve

FengWu –
China academia + 
Shanghai Met 
Bureau
0.25° 6-hour product

Improves on 
GraphCast for 
longer leadtimes 
(still deterministic) 

ECMWF staff 
~500km ERA5 
to predict future 
z500.
Similar work 
from Rasp and 
Weyn.

2018
Exploring the concept

Spherical harmonics

Jun 2023

Diffusion modelling

NVIDIA – SFNO 
0.25° 6-hour 
product

Extension of 
FourCastNet to 
Spherical 
harmonics, 
improved stability

Alibaba – 
SwinRDM 
0.25° 6-hour 
product

Sharp spatial 
features

Defining the 
dataset, split, 
headline fields 
and metrics

2020 WeatherBench

Last months
FuXi
AtmoRep
FuXi-extreme
NeuralGCM
GenCast
…

impossible to 
keep this 
figure up
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What data do they train on?
• ERA5 dominates the landscape. 

– Long, global, self-consistent.

– Easy and quick to access.

• Some work learning forecast trajectories, but this “limits” accuracy to that of the existing physical 
model.

• Now GraphCast & AIFS use a few years of IFS operational analysis. These improve the model, 
particularly for its use initialised from operational IC.

• Next steps, we can expect other centres to explore fine-tuning on their own IC.

• Beyond, combinations of observations and (re)analysis.
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Design choices for learning a model from (re)analysis
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What architecture? How should spatial 
relationships be encoded?
What to minimise?

How to handle time?

What variables do I use?
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Architecture choices
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Convolutions
Graphs
Transformers
Fourier Neural Operators
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Convolutions
• Simplest design, treat the Earth as a cylinder, use convolutions with periodicity in longitude.

– No treatment of the pole. How can flow easily pass over the artic?

• Weyn et al 2020 proposed a clever cubed-sphere approach.
– One set of CNN for the side faces of the cube.

– Another for the polar faces.

• Karlbauer et al (2023) do convolutions on the HealPix
grid (see below)
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Graph Neural Networks
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• First demonstrated by Keisler 2022.

• Most popular, the message passing GNN.
– Involves MLPs on the edges, and nodes.

– Alternates are GraphConvolutions &
Graph Attention

• Further developed in GraphCast
– And used in early versions of the AIFS.

• No issues at the poles.

• Can handle irregular data in space.
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(Vision) Transformers
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SwinTransformerV2 block

• Build heavily on advances in vision transformers
– Specifically Shifted Window (SWIN) approaches.

• Pangu, FuXi, FengWu.

• Embed to a coarser resolution.

• Shifted-window approach adapted to include
longitudinal periodicity.

– But poles are not explicitly handled.
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Fourier Neural operators
• e.g. FourCastNet, popularised by NVIDIA.

• Part of neural network carried out in frequency space.
– Part in grid-point space.

• Grid-invariance built in.

• Spherical version encodes the symmetries of the sphere.

•  Also used in “ACE”, the climate emulator.
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So, which to choose?
• Vision transformer and GNN solutions both hit comparable levels of skill.

– SFNO a little further behind in skill, unclear why.

– CNN not been implemented at the same scale.

• GNN naturally encodes the sphere and allows use of equi-spaced grids.

• Vision transformers (and SFNO) appear to converge faster than GNN.
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Latest AIFS – hybrid of graphs & transformers
• Encoder/decoder: graph attention.

• Processor: Transformer blocks, attention across regional bands.
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Encoder

Processor

Decoder
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What loss to optimise?
• MSE and MAE make for very popular choices.

• But the problem is inherently probabilistic.
– Generative techniques can help here!

– GenCast (right) builds a denoising network that is inherently uncertain.

– NeuralGCM, directly aims to minimise the CRPS (a probabilistic skill score).

• For all losses, you need to decide how to aggregate over variables &
heights.

– This introduces many parameters…

– FengWu predict mean & standard-deviation, optimise log-likelihood
argue that homoscedastic uncertainty balances the loss.
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How to handle time?
• How many time slices to provide as input?

– Weyn et al (2020) provide 2 time slices
and get out the next two.

– This is now used by many others.

• How big of a timestep to make?
– Early work tried 3-day steps but failed to compete with physics models.

– Many choose 6-hours, but this limits the granularity of the output.

– Pangu Weather created multiple models for different timesteps…

– but this leads to inconsistencies in time.

14EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



October 29, 2014

Minimise over long time windows? 
• FourCastNet & Keisler proposed to minimise the loss over multiple applications of the model.

– i.e. not just minimise f(x(t)) against x(t+6), but also f( f(x(t) ) against x(t+12).

– This leads to stable and accurate results.

– GraphCast came up with an efficient
algorithm for minimising out to 72h.

– FuXi took it to the extreme, minimising
out to 15 days.

• FengWu made a “buffer” of predictions from
their model and used this as training data.

– Thereby training the model to deal with its
own output.
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“Cost” of minimising MSE/MAE
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“Cost” of minimising MSE/MAE – over a few days
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“Cost” of minimising MSE/MAE – over week(s)
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Not behaving like a forecast member, but like an 
ensemble mean. Useful to fewer users?
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Value of a probabilistic loss
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From GenCast paper 
Graphcast in green.

GraphCast
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What variables to use?
• Two driving motivations:

– What helps me predict better.

– What do users want from the system.

• If high quality data exists, then it can be added directly to the training…

• Typical set used by many models:
– ~13 pressure level (with model top at 50hPa)

• Contrast with 137 model levels in the IFS.

• GraphCast version with 37 levels isn’t more skilful than 13 level version.

– q, t, u, v, z

• But no direct cloud information.

– At the surface: 2t, msl/sp, 10u/v and precipitation for some.
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How good are these models?
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Northern hemisphere z500 ACC

Southern hemisphere z500 ACC

Higher = better
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AIFS v0.2 – surface 
against observations

22EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Northern hemisphere 2m-temperature

Southern hemisphere 2m-temperature

Lower = better
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• Live from 28th Feb.

• SEEPS for 24h accumulated precipitation
against observations. 
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Precipitation currently lacking intensity and small scale structure
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+6h

+120h
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What about “extreme” events? – 2t Summer/Winter extremes
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Tropical cyclones: a tale of two plots
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Are data-driven weather forecasts physical?
• Highly recommend reading Hakim & Masanam 2023: 
 Dynamical Tests of a Deep-Learning Weather Prediction Model

• Take Pangu weather, and test it on a series of classical dynamical 
core test cases.

– Cases need to be applied as deviations from climatology.

– Apply localised disturbances and study the reaction of the system.

• Overall, Pangu behaves as expected, compared with theory.
– The 1h model is best for the faster evolving processes, which

aren’t well captured by the longer timestep model.

• Hopefully we see lots more studies of this type.
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Are data-driven weather forecasts physical?
• Bonavita 2023 explore other tests with Pangu Weather.

• Geostrophic balance fairly well represented, but not as well as the IFS. 
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Geostrophic winds Ageostrophic winds Ratio
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Limited area data-driven models
• NeuralLAM, the first of likely many regional data-driven models.

– An emulator of the MEPS model, learning to mimic trajectories

– Uses Graph NN.

• Several alternate approaches exist for
LAM with ML.

– Stretching a global grid for high resolution
over a region.

– ML downscaling to add resolution.

• Anemoi, the framework used to create the
AIFS is being expanded to enable these 
different methods side-by-side.
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Learning more abstractly – representation learning
• Learn to fill in space-time gaps of ERA5.

• Forecasting becomes a subtask.
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Do you need to learn everything?
• NeuralGCM (Google).

• Write a dynamical core in JAX (differentiable ML framework).
– Add neural networks with the connectivity to learn local parametrisations.

– Train the whole thing over time windows.

• Learn very skilful model (including an ensemble).
– But requires a lot more compute than a data-driven weather model.
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Where are we?
• For headline scores, data-driven models are best.

• Don’t represent all the spatial scales correctly when trained deterministically.
– Still useful, despite this, and probabilistic framing appears to solve this.

• Extreme events
– a mixed bag, with much more evaluation needed.

• Ensembles
– first models show a lot of promise

– but again, more evaluation needed
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Where is the field going?
• Earth system data-driven models

– Capture land, ocean and more processes.

• Extended range predictions, pushing beyond 2 weeks.

• Use of observations to predict the future state.
– Incorporate data-assimilation into the training.

• Collaboration between ECMWF and MS on data-driven models.
– Opportunities to share code/infrastructure whilst still having bespoke models.

What do you think the future will hold?
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