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Introduction

“Our work reinforces the bitter lesson. The most
important factors determining the performance of
a sensibly designed model are the compute and

data available for training. [...]”

Smith et al., ConvNets match Vision Transformers at Scale, https://arxiv.org/pdf/2310.16764.pdf
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Motivation

 Recurrent neural networks

« Standard for temporal sequence problems (e.g. in natural language
processing up to 2018)

RNN

 Training is difficult to parallelize
 Implicit connection to past states
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Motivation

 Architecture that can be parallelized more efficiently
* More direct interaction between information, in particular “far away” one

Provided proper attribution is provided, Google hereby grants permission to
reproduce the tables and figures in this paper solely for use in journalistic or
scholarly works.
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What is attention?

+ Similarity measure between hidden/latent states {¢;}5r;
 Hidden/latent states are vectors in RE
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What is attention?

+ Similarity measure between hidden/latent states {¢;}1>,
+ Hidden/latent states are vectors in R”
* Use usual dot product to measure similarity
« Update hidden/latent state based on similarities
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What is attention?

+ Similarity measure between hidden/latent states {¢;}1>,
+ Hidden/latent states are vectors in R”
* Use usual dot product to measure similarity
« Update hidden/latent state based on similarities
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softmax nonlinearity
(smoothed/differentiable version of argmax + normalization)
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What is attention?

« Softmax
er?
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What is attention?
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What is attention?
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Vaswani et al., Attention is all you need, 2017, https://arxiv.org/pdf/2310.16764.pdf
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Is attention?
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What is attention?
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What is attention?
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What is attention?

+ Similarity measure between hidden/latent states {¢; }7Y_,

 Hidden/latent states are vectors in RE

* Use usual dot product to measure similarity
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What is attention?

+ Similarity measure between hidden/latent states {¢; }7Y_,

 Hidden/latent states are vectors in RE

* Use usual dot product to measure similarity

« Update hidden/latent state based on similarities
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Transformer encoder
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Transformer encoder

attention block
My 1

house
is

v

skip

acts independently on
each token
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Transformer encoder

house
is

t1

attention bm-

skip

Y

v

 an
A\~ 4 ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS




Transformer encoder

Transformer block: iterate M times

attention block
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Transformer encoder
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Transformer encoder

My | &
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Transformer encoder

nonlinear map from one
feature (vector) space to
next one
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Transformer encoder

nonlinear map from one nonlinear map from one
feature (vector) space to feature (vector) space to
next one next one
My | &
house A A A
IS t; 12}
ti t]
> tj
tn
t
attention block MLP attention block MLP attention block

e
< 4 ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

39



Transformer encoder

nonlinear map from one nonlinear map from one
feature (vector) space to feature (vector) space to
next one next one
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Transformer encoder

Transformer block: iterate M times

attention block
My 1

house
is
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Transformer encoder

 Positional encoding
« Tokens after embedding form a set without ordering
« Structure/relationship between tokens needs to be encoded separately
* Encoding can be fixed or learned

 Classical approach: harmonic positional encoding that overlays sine/cosine
oscillations with frequency that depends on position

A N N N
+

t; ERE
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Transformer encoder

Transformer block: iterate M times

attention block
My 1
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Vision transformer (encoder)

Transformer block: iterate M times

attention block
My 1

house
is

skip

How to define a token when one has a pixel image instead of discrete words?
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Vision transformer (encoder)

How to define a token when one has a pixel image instead of discrete words?

Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, 2021, https://arxiv.org/abs/2010.11929
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Vision transformer (encoder)

token is small image
patch

- enough structure
for dot product to
make sense

- small enough
attention to provide
rich structure

A

How to define a token when one has a pixel image instead of discrete words?
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Vision transformer (encoder)

Transformer block: iterate M times

attention b&.
1

skip

Vision transformer: token is small but non-trivial image patch
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X transformer (encoder)

Transformer block: iterate M times

attention block

3!

skip

Central (only) question: what is a token, i.e. what is small information “nugget™?
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X transformer (encoder)

Transformer block: iterate M times

attention b&.
1

skip

Atmosphere: token as information from small space-time neighborhood
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What is attention?

Lessig et al., AtmoRep, 2023, https://arxiv.org/abs/2308.13280
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What is attention?

Lessig et al., AtmoRep, 2023, https://arxiv.org/abs/2308.13280
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Transformer encoder-decoder

* Introduced in the original transformer paper (Vaswani et al., 2017) for
translation tasks

* Encode: input and encode language A
» Decoder: decode and output language B
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Transformer encoder-decoder

51

encoder
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Transformer encoder-decoder

51
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decoder
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Transformer encoder-decoder

51

German

English

encoder

\ 4

decoder
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Transformer encoder-decoder

German

English
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queries from
source stream
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values from
target stream
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Transformer encoder-decoder
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Transformer encoder-decoder

51

German

causal masking with
parallel prediction

encoder
repeat K times
c : C‘/
o 2 2 S 0
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» QD 5 2 =
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queries from
source stream
and keys,
values from
target stream
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Extensions

« Sparse attention

 Attention is quadratic which quickly limits the number of tokens one
can process

« Sparse attention computes attention only between “likely” relevant
tokens, e.g. nearby ones in a temporal stream

« Shared kv’'s between heads
. gk LayerNorm
« Additional layer norm in attention head (important for large models)
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Summary

Transformer are standard neural network in many applications

Sequence-to-sequence model operating on a set/sequence of tokens

Versatile since only the definition of a token and the embedding network is
domain specific

Computationally highly efficient since software and hardware is optimized for
them

» But sparse attention required in general
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