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A taxonomy of forecast models
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Standard NWP models
(IFS, ICON, FVM,…)

Model error correction
(e.g. Bonavita and 
Laloyaux, 2020; Farchi 
et al., 2022, 2023)

Partial model emulation
(e.g. Chantry et al., 2021
Kochkov et al., 2023, 
NeuroGCM)

Full model emulation
(e.g. Keisler, 2021, 
PanguWeather, 2022,
GraphCast, 2023, …)
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Data-driven model error correction

Physical model

𝒙 𝑡 + ∆𝑡

𝒙 𝑡

Neural Network

• The physical model will always be affected by systematic, 
predictable errors due to a variety of causes (unresolved, 
unrepresented physics, discretisation errors, wrong model 
forcings, etc.) 

• The NN is used as a data-driven (statistical) online correction 
to the time tendencies forecasted by the physical model:

𝑑𝒙
𝑑𝑡

= Φ!"# 𝒙 𝑡 + Φ$%&' 𝒙 𝑡 + Φ() 𝒙 𝑡

• Is model error a big deal?
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Model Error: Atmosphere 

Time series of the difference between 
observations and temperature first-guess 
trajectory from the ECMWF operational 
analysis cycle for radiosonde (top) and 
Radio Occultations (bottom)

Laloyaux et al., 2020
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• Traditionally, DA algorithms have used a perfect model assumption and aimed at 
reducing random initial conditions errors: this approach brings steady progress up to 
~2 weeks, but not beyond

•  Can Machine Learning help break the 2-week Lorenz predictability barrier?  

Fr
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From Frederic Vitart and Thomas Haiden
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Model Error: Ocean

From Hao Zuo

NOAA drifter climatology ORAS5 1985-2012.
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Model error estimation

Physical model

𝒙 𝑡 + ∆𝑡

𝒙 𝑡

Neural Network

• The first challenge is the estimation of model error 

• Using a statistical model like a NN requires choosing a 
ground truth to build the training dataset

• We have different options here…
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Model error estimation

• One option is to train the NN using a more complex, more accurate, higher resolution version of the 
model as a proxy for the truth

• The goal is to train the NN to learn the effect of the parameterised and unresolved dynamical and 
physical processes onto the resolved dynamics (e.g., Brenowitz and Bretherton, 2018, 2019; Rasp et 
al., 2018) 

Brenowitz and Bretherton, 2019
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• In Ocean Modelling one of the main sources of errors come from insufficient resolution -> need to 
account for unresolved physical processes

• This problem has been tackled with ML tools (CNN, DNN, RVM) to build offline data-driven 
parameterizations of the unresolved dynamics for a fully observed system (Bolton and Zanna, 
2019, Zanna and Bolton, 2020, Kutz, 2017, Ling et al., 2016)
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Bolton and Zanna, 2019

Model error estimation
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Model error estimation

• Another option is to train the NN 
using observations of the system 
as a proxy for the truth

• The training dataset is built using 
observations minus (short range) 
forecasts (O-B departures) 

• The NN is trained to learn the O-B 
departures from a set of available 
predictors (state, location, time of 
day, season, etc.)

ECMWF Observation Monitoring



October 29, 2014BONAVITA - MACHINE LEARNING TRAIN. COURSE 2024
12

Model error estimation

• The idea of using observations as the truth is attractive because it directly introduces independent 
information on the model errors we want to correct

• It also comes with its own caveats: observation errors, observation coverage, how to extrapolate the 
corrections in space, time and to other variables in a physically consistent manner?  

O-B departures on 01-05-2019 averaged between 10S and 20N (left) and their 
prediction with a Convolutional Neural Network (right)

From P. Laloyaux, 2021
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Model error estimation

• Option #3 is to train the NN using analysed states of the system as a proxy for the truth

• The training dataset is built using analysis minus (short range) forecasts (A-B increments) 

• The NN is trained to learn the A-B increments from a set of available predictors (state, location, time of 
day, season, local solar zenith angle, SST, etc)

• Advantages: 

1. The model error estimates are directly available in model space and globally;

2. Analyses are more accurate than any individual observation type

• Disadvantages:

1. The analyses will be affected to some extent by the model error we want to estimate

2. The (A-B) increments will also be affected by ”errors of the day” (i.e., initial condition errors)
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Model error estimation: weak constraint 4D-Var

• We already do model error estimation inside the 4D-Var analysis cycle: it is called weak constraint 4D-
Var! 

𝐽*+,-.!/ 𝒙0, 𝜼 = 𝐽1 + 𝐽2 + 𝐽3 =
1
2 𝑥0 − 𝑥04

5𝐵67 𝑥0 − 𝑥04

+ 7
8
∑9:0; 𝐻9(𝑥9) − 𝑦9 5𝑅967 𝐻9(𝑥9) − 𝑦9

+ 7
8
∑9:7; 2𝑥9 −𝑀9 𝑥967, 𝜼

5
𝑄967 𝑥9 −𝑀9 𝑥967, 𝜼  

Loss functions common in ML/DL can be obtained as particularisations of wc-4DVar (Brajard et al., 2020; Bocquet et al., 2020; 
Farchi et al., 2020):

1. ML/DL models are not used for state estimation → 𝐽! = 0	
2. ML/DL loss functions typically assume full, noiseless observations 𝐻" = 𝐼, 𝑅" → 0 → 𝐽# = 0
3. ML/DL models can optionally have a regularization term function of the NN model parameters L(𝜼) =L(𝑾,𝒃), e.g. Tikhonov 

regularisation, drop-out, etc.

𝒙! = 𝑠𝑡𝑎𝑡𝑒	𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒
𝜼 = 𝑚𝑜𝑑𝑒𝑙	𝑒𝑟𝑟𝑜𝑟	𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 
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Model error estimation: weak constraint 4D-Var

• wc-4DVar progressively learns a 
model error tendency correction 
and applies it to subsequent 
background forecasts in the DA 
cycle

• wc-4DVar is an online machine 
learning algorithm for model error 
estimation and correction!

Mean first-guess departure with respect to GPS-RO temperature retrievals

From Laloyaux et al, 2020
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Model error estimation: weak constraint 4D-Var

• What can Machine Learning bring to table?

• wc-4DVar produces an estimate of model error valid over the length of the assimilation window: 
𝐽"#$%&'( 𝒙!, 𝜼

• The NN will produce a model of model error, which can be applied and used at any point in time: 

MW(𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒐𝒓𝒔) = MW(𝒙, 𝑡𝑖𝑚𝑒, 𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑆𝑆𝑇,… )
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Hybrid ML-DA

• Option #3 is to train the NN using analysed states of the system as a proxy for the truth

• In this approach we have a number of possibilities on how to fuse the Data Assimilation system with the 
ML estimate of model error:

1. Offline training of NN and use it in a data assimilation cycle (e.g, Bonavita and Laloyaux, 2020, 
Watson, 2019);

2. Online training of NN in a data assimilation cycle with a coordinate descent approach (e.g. Brajard 
et al., 2020, Bocquet et al., 2020),

3. Full online training of NN inside data assimilation system (e.g., Farchi et al., 2021b)   
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Hybrid ML-DA in low-order systems

• In all generality we would like to minimise the following cost function of the state (x0:N) and the NN 
parameters (p) (Farchi et al., 2021):

• Here the background error (x0-	x0b)~N(0,B), the observations are sparse and are related to the system 
state by yk=Hk(xk)+vk,	(vk~N(0,R))

• Model errors (xk+1-M(p,xk)) follow a Gaussian distribution with covariance Qk, and are assumed 
uncorrelated with other error sources
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Hybrid ML-DA in low-order systems

• How to optimise this cost function of (p,	x0:N)?

• One way is to alternate DA steps (to estimate x0:N) and ML steps (to estimate the model error 
parameters p) in a coordinate-descent framework: 

Coordinate descent approach for the 
online training of a NN

From Farchi et al., 2020
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• This coordinate-descent idea was used with good results, e.g. in Brajard et al., 2021 to reconstruct the 
state and the dynamics of Lorenz-96 model using convolutional neural networks

• However: 1) the initialization of p is critical and cold-starting can easily lead to divergence, and 2) the 
number of DA-ML cycles required to reach convergence can be high, problematic for a realistic application
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Hybrid ML-DA in low-order systems

State estimation with the coordinate 
descent approach for the online 
training of a NN

from Brajard et al., 2021
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Hybrid ML-DA in low-order systems

• Farchi et al., 2021a, have used an offline training approach to construct a hybrid ML-physics model for a 
quasi-geostrophic system

• Their surrogate model based on Convolutional Neural Networks was shown to be able to significantly 
improve on the original perturbed model both in forecast mode and in the assimilation cycle  

Forecast skill of the original model (dotted line) 
and the hybrid surrogate model (continuous 
line) as a function of the lead time in days

From Farchi et al., 2021a
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Hybrid ML-DA in low-order systems

• In Farchi et al., 2021b, two crucial aspects of the training process have been studied using the two-scale 
Lorenz model

• One aspect was whether it is more efficient to correct the integrated-in-time model error (i.e., the model 
resolvent), or the model error tendencies

• Results show that both techniques perform well in forecast mode, but tendency correction is preferable 
when the hybrid model is used in a DA cycle  

Analysis RMSE for the physical model (in 
blue), the true model (in black), and the 
trained surrogate models: RC-CNN-a (in 
green), TC-CNN-b (in red), and TC-CNN-c 
(in cyan). The surrogate models are trained 
either with the analysis (left panel) or with 
the truth (right panel).

From Farchi et al., 2021b
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Hybrid ML-DA in low-order systems

• The other aspect that was investigated was the effectiveness of offline vs online (i.e., inside 4D-Var) model 
error learning 

• Online learning appears to give best results in this experimental setup  

Time series of sRMSE (top panel) and tMSE 
(bottom panel) for the online experiment 
with TC-CNN-b (in blue).  For comparison, 
the horizontal lines show the scores for the 
physical model (in cyan), the true model (in 
black), TC-CNN-b trained offline with the 
analysis (in green) and trained offline with 
the truth (in red).

From Farchi et al., 2021b
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• How can we adapt these ideas to operational NWP and Climate prediction? There are some 
issues:

1. Typically there is not enough time to iterate to convergence the DA and ML steps in 
operational NWP;

2. We have a much more complex model, but a very good one!

3. Most importantly, the size of the model error space is orders of magnitude bigger than in 
low-order models

BONAVITA - MACHINE LEARNING TRAIN. COURSE 2024
24

Hybrid ML-DA in operational systems
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• What kind of prior knowledge do we have on the atmospheric model error generating distribution? 

• Prior assumptions:

1. We can consider the atmospheric flow to be subject to homogeneous dynamics and 
heterogeneous forcings;

2. Physical parameterisations of unresolved motions and radiation plus surface forcings are the 
dominant sources of model error

3. Physical parameterisations are computed and applied over model columns.

• This led us to define a set of predictors made up of the concatenation of climatological predictors 
(time of day, month, lat, lon) and the vertical columns (137 levels) of the model first guess prognostic 
variables of the model (t, lnsp, vo, div, q).     

• This choice amounts to splitting the full 3d regression problem into a 1d x 2d problem and is 
conceptually similar to having a separable representation of a 3D covariance matrix

Hybrid ML-DA in operational systems
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• Dense Neural Network with Relu 
activations

• Three layers with nonlinear 
activations give best results: 
problem with only moderate 
nonlinearities

• Dropout layers used to control 
overfitting, input/outputs pre-
normalised for training, Adam 
minimiser

• Number of trainable parameters 
~6*104, size of training dataset ~106

Bonavita & Laloyaux, 2020

Hybrid ML-DA in operational systems
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• Training/Testing curves are shown in terms of 
explained variance (R2)

• Saturation of explained variance is used as stopping 
criterion during training

• Mass (T, lnsp) errors can be better predicted (~14-
15% explained variance) than wind (~4-5% explained 
variance) and humidity (~0%) errors.

• State-dependent predictors (first guess values) have 
more predictive power than climatological predictors

•  The NN model provides a state-dependent correction 
beyond climatological bias correction.

Bonavita & Laloyaux, 2020

Hybrid ML-DA in operational systems
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Model Error Estimation and Correction in the IFS: Random errors

28

Globally-averaged Observation-First Guess StDev norm. diff.

TEMP WIND

Note: 100% Baseline is current operational Weak Constraint 4D-Var
Bonavita & Laloyaux, 2020
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Model Error Estimation and Correction in the IFS: Forecast Skill

29

• ANN in combination with Weak Constraint 4DVar improves the fit of observations to the 
model, both in the mean and in the random component.

• What can the ANN bring to forecast skill?

Improvement

Degradation
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Model Error Estimation and Correction in the IFS
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• The original idea of Bonavita and Laloyaux, 2020 has been further developed 
• Specifically, the NN training can now be done inside the IFS 4DVar (NN 4D-Var, Farchi et 

al., 2023) 
• Where are we with this line of development? 
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Model Error Estimation and Correction in the IFS
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From Marcin Chrust (ECMWF)
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Model Error Estimation and Correction in the IFS
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• Up to now we have been learning model errors optimising NN 4D-Var over the standard 
12-hour assimilation window 

• The problem with this approach is that some of the errors of the initial conditions (analysis) 
will get aliased into the model error estimates

• Initial conditions errors will be less of a factor if we do the NN 4D-Var optimisation over a 
longer assimilation window 
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Model Error Estimation and Correction in the IFS
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From Marcin Chrust (ECMWF)
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Model Error Estimation and Correction in the IFS
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• Optimising over a 24-hour assimilation window shows clear improvement over 12-hour 
window (it recovers ~ half the gap in performance between the IFS and GraphCast/AIFS) 

• Can we do better with an even longer assimilation window?
• Up to now we have used the original fully connected NN column model in NN 4D-Var. What 

if we use more expressive 3D NN architectures* (CNN, Graph networks, Transformers, 
etc.)?  

• To be continued…

* Note that this is more complex than putting together NN blocks in Tensorflow/Pytorch, as it requires coding the NN 
machinery inside 4D-Var 
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A taxonomy of forecast models
𝒙 𝑡 + ∆𝑡 = 𝑀 𝒙 𝑡

Physical model

𝒙 𝑡 + ∆𝑡
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Model error correction
(e.g. Bonavita and 
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et al., 2022, 2023)

Partial model emulation
(e.g. Chantry et al., 2021
Kochkov et al., 2023, 
aka NeuroGCM)

Full model emulation
(e.g. Keisler, 2021, 
PanguWeather, 2022,
GraphCast, 2023, …)
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ML forecast models

• Field took off with Keisler, 2022, then in rapid 
succession FourCastNet (NVIDIA, Pathak et 
al., 2022), Pangu-weather (Huawei, Bi et al., 
2022), GraphCast (Google-DeepMind, Lam et 
al., 2022), FengWu (Academic, Chen et al., 
2023)…

• All trained on ERA5 re-analysis (deterministic 
+ EDA) 

• Superior forecast scores, 3-4 order of 
magnitude cheaper to run (not to train!) 

 

• What’s not to like?
From Zied Ben Bouallegue (ECMWF)
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A look under the hood of MLWP models: Pangu-weather 
• Earth system forecasting at all ranges from hours to seasons is an initial conditions problem

• Are Pangu-weather (and other DLWP models) realistic atmosphere emulators?

Temperature 850hPA Temperature 250hPA

Bonavita, M. (2023) On some limitations of data-driven weather forecasting models.
GRL, under review. (arXiv: 10.48550/arXiv.2309.08473)
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A look under the hood of MLWP models: Pangu-weather 
• Earth system forecasting at all ranges from hours to seasons is an initial conditions problem

• Are Pangu-Weather (and other DLWP models) realistic atmosphere emulators?

• Pangu-Weather forecasts show sharply decreased levels of variability wrto ERA5 
analyses beyond ~wavenumber 50 (~400 km) from the start of the forecast

• Differently from IFS forecasts, which show consistent variability at all forecast 
ranges, PW forecast variability decreases with forecast range, noticeable jump at 
t+24h and beyond -> increasing “blurriness” of predictions 

• Does it matter?
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A look under the hood of MLWP models: Pangu-Weather 
• Earth system forecasting at all ranges from hours to seasons is an initial conditions problem
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A look under the hood of MLWP models: Pangu-Weather 
• Earth system forecasting at all ranges from hours to seasons is an initial conditions problem

fcst min mslp: 957 hPa

ECMWF HRES t+132h valid 26/07/23 12Z 

fcst min mslp: 986 hPa

Pangu-weather t+132h valid 26/07/23 12Z 

TC Doksuri 26 Jul 2023 12Z
Estimated Best Track min mslp: 944 hPa



Vertical velocity is not predicted by Pangu-Weather (and others) but can be diagnosed 
by integrating the continuity equation on forecasted pressure-level fields (Holton and 
Hakim, 2012):

Unsurprisingly, the progressive reduction in the magnitude of the predicted divergence 
field leads to increasingly weak vertical velocity predictions:

41

Pangu-Weather dynamical fields

Evolution of stdev of fcst 
vertical velocity field
IFS, ERA5, Pangu 
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Pangu-Weather dynamical fields (3)

ERA5 fcst vert. vel. 
2023-09-07 00UTC t+120h

Pangu-Weather fcst vert. vel. 
2023-09-07 00UTC t+120h
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Pangu-Weather dynamical fields (3)

Hurricane Lee, 12 September 2023 
01UTC
Strongest TC of the 2023 Atlantic 
Season so far, Category 3 at the time 

https://zoom.earth/storms/lee-2023/#map=satellite-hd
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Pangu-Weather dynamical fields (3)

ERA5 vert. vel. (m/s) + Z500
2023-09-07 00UTC t+120h

IFS vert. vel. (m/s) + Z500 
2023-09-07 00UTC t+120h
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Pangu-Weather dynamical fields

GraphCast vert. vel. (m/s) + Z500
2023-09-07 00UTC t+120h

Pangu-Weather vert. vel. (m/s) + Z500 
2023-09-07 00UTC t+120h

AIFS v0.1 vert. vel. (m/s) + Z500 
2023-09-07 00UTC t+120h
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Take-home Messages

46

Ø We are in the Big Data era! There is an unprecedented and rapidly growing amount of 
geophysical data ready to be used, both online (at ECMWF we use ~80 million obs a 
day in 4DVar: this is still less than 5% of the total amount of obs that reach the building 
every day!) and through reanalysis datasets

Ø This means that we have enough data not only to improve the initial state estimates, but 
also the models (both forecast model and forward models for observations)

Ø Machine Learning techniques can play a crucial role in tackling model deficiencies and 
improving predictive capabilities in both NWP and Climate. 

Ø This field is evolving rapidly, next year’s presentation will likely be quite different from 
this year’s! Stay tuned…
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• For the next generation of MLWP models the challenge will be to produce physically consistent 
forecasts with realistic activity levels and maintain forecast skill

• Can MLWP extend to DA, i.e. from observations to forecasts? (no examples of this yet, contrary to what 
is sometimes claimed)

• For the traditional DA-NWP community the challenge is to speed up adoption of ML techniques to make 
traditional DA and NWP processes significantly more effective and efficient: Can we match ML models 
forecast accuracy and provide physically credible forecasts?

• Too early to say which approach will prevail, but certainly things are moving at speed! 
4th ECMWF-ESA Workshop on ML for Earth Observation and Prediction, Frascati, Rome, 7-10 May 
2024 (https://www.ml4esop.esa.int)

47

Outlook
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Thanks for your attention!
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A look under the hood of MLWP models: Pangu-Weather 
• Earth system forecasting at all ranges from hours to seasons is an initial conditions problem

Unrealistic forecast energy spectra imply dynamically inconsistent forecast fields 



53

Pangu-Weather dynamical fields (1)
• Earth system forecasting at all ranges from hours to seasons is an initial conditions problem

Geostrophic wind (𝐕) =
*

+
(𝐤×∇,Φ) vs ageostrophic wind 𝐕') ≡ 𝐕 − 𝐕) 

Pangu

IFS

𝑽𝒈 𝐕𝒂> 𝐕𝒂) / 𝐕)
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Pangu-Weather dynamical fields (1)
• Earth system forecasting at all ranges from hours to seasons is an initial conditions problem

Geostrophic wind (𝐕) =
*

+
(𝐤×∇,Φ) vs ageostrophic wind 𝐕') ≡ 𝐕 − 𝐕) 

Pangu IFS

𝐕𝒂>
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Pangu-Weather dynamical fields (2)
• Earth system forecasting at all ranges from hours to seasons is an initial conditions problemVorticity and divergence decomposition of the circulation

𝒖 = 𝒖. + 𝒖/ = −∇𝜒 + 𝐤×∇𝜓

∇0χ = 𝛿,  ∇0ψ = 𝜁 

Pangu IFSERA5-fcst

𝛿/𝜁 𝛿/𝜁 𝛿/𝜁


