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The uncertainty range is still very large...



The rise of data-driven weather forecasts
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The rise of data-driven weather forecasting

Zied Ben-Bouallegue, Mariana C A Clare, Linus Magnusson, Estibaliz Gascon, Michael Maier-Gerber, Martin
Janousek, Mark Rodwell, Florian Pinault, Jesper S Dramsch, Simon T K Lang, Baudouin Raoult, Florence
Rabier, Matthieu Chevallier, Irina Sandu, Peter Dueben, Matthew Chantry, Florian Pappenberger

Data-driven modeling based on machine learning (ML) is showing enormous potential for weather forecasting. Rapid

progress has been made with impressive results for some applications. The uptake of ML methods could be a game- Change to browse by:

hysics
changer for the incremental progress in traditional numerical weather prediction (NWP) known as the 'quiet revolution' of Py
weather forecasting. The computational cost of running a forecast with standard NWP systems greatly hinders the References & Citations
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improvements that can be made from increasing model resolution and ensemble sizes. An emerging new generation of ML
models, developed using high-quality reanalysis datasets like ERAS for training, allow forecasts that require much lower
computational costs and that are highly-competitive in terms of accuracy. Here, we compare for the first time ML-generated
forecasts with standard NWP-based forecasts in an operational-like context, initialized from the same initial conditions.
Focusing on deterministic forecasts, we apply common forecast verification tools to assess to what extent a data-driven Bookmark
forecast produced with one of the recently developed ML models (PanguWeather) matches the quality and attributes of a 2
forecast from one of the leading global NWP systems (the ECMWF IFS). The results are very promising, with comparable i

skill for both global metrics and extreme events, when verified against both the operational analysis and synoptic

observations. Increasing forecast smoothness and bias drift with forecast lead time are identified as current drawbacks of

ML-based forecasts. A new NWP paradigm is emerging relying on inference from ML models and state-of-the-art analysis

and reanalysis datasets for forecast initialization and model training.
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There has been substantial progress recently in the realm of
data-driven weather forecasting. Big technological
companies like Google, Huawei and Nvidia have built purely
data-driven weather forecasting models. These models
outperform leading physics-based global numerical weather
prediction (NWP) models in many of the standard forecast
scores, such as root-mean-square error (RMSE) and Anomaly
Correlation Coefficient (ACC) for geopotential height at 500
hPa. They are trained on historical weather data, usually a
subset of ECMWF's ERAS reanalysis dataset, and they rely on
traditional NWP analyses as initial conditions when
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« What are Al and Machine Learning?

« Showcase of Machine Learning Applications

 Tackling Machine Learning in Physical Disciplines

 The Rise of Data-Driven Numerical Weather Forecasts

+ Selected Challenges and Opportunities
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Artificial intelligence

Machine learning

Let’s start with definitions

Artificial intelligence (Al) is intelligence demonstrated by machines, in
contrast to the natural intelligence displayed by humans (Wikipedia)
Example: A self-driving car stops as it detects a cyclist crossing

Machine learning (ML) is the scientific study of algorithms and statistical
models that computer systems use to perform a specific task without using
explicit instructions... (Wikipedia)

Example: To learn to distinguish between a cyclist and other things from data

Deep learning is part of a broader family of machine learning methods
based on artificial neural networks (Wikipedia)
Example: The technique that is used to detect a cyclist in a picture
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Why would machine learning help in weather and climate predictions?

Predictions of weather and climate are difficult:

« The Earth is huge, resolution is limited and we cannot represent
all important processes within model simulations

« The Earth System shows “chaotic” dynamics which makes it
difficult to predict the future based on equations

« All Earth System components (atmosphere, ocean, land surface,
cloud physics,...) are connected in a non-trivial way

« Some of the processes involved are not well understood

However, we have a huge number of observations and Earth
System data

- satellites

airplanes

» There are many application areas for machine learning in
numerical weather predictions

- radars

- balloons

- dropsondes
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Numerical Weather Prediction
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Machine learning at ECMWF

Unstructured __ NOGWD emulation / Low dimensional S2S Challenge /
grids / COE Soil m_?'f_turfj Oxford ocean models / p—— WMO
assimilation Bias correction X Imperial College .
pus— t\ CNRS CAMS emulator in 4D-Var TL/AD of . Highlander /
ssimilate
I fi ML4Land / _
scatterometer emulator for \ Tropical
backscatter 4D-Var ESoWC Wildfi dicti Cyclone
7 ildfire prediction
Bias correction Estimates of the . detection /
: . I
[ servation ;
25;;%?2“ quality control | e jlodelienesio prediction . - r—z
: OOPS correction Al4Emissions / Lookdown induced NO2 Study tropical cyclone
ESowC changes genesis / CLINT
- \

Numerical weather
forecasts

Observatlons Data assimilation

—

High-performance and (big) data processing ‘infrastructure

Sea ice Learn machine MAELSTROM CliMetLab Wave model Learn and understand Precipitation Tropical Cyclone Tracking
surface learning model in 4D- co-design cycle emulation / model error from downscaling/ | | with CliMetLab
emissivity Var / Fellow Bocquet / Oxford observations / IFAB Oxford
[ / Anomaly \ [ \
detection / Ensemble post-
Fastem-7 for RTTOV ocean Machine learning — IFS ESowC SPARTACUS emulation / Neural Network Precipitation processing /
emissivity / CNRS coupling with Infero Reading preconditioner / Oxford | downscaling / Microsoft
Warwick and
: ) COE == Centre of Excellence with ATOS and NVIDIA  Bristol
Planned | Ongoing Published ESoWC == ECMWF Summer of Weather Code




Get organised! — A machine learning roadmap

Technical
Memo

S ECMWF

European Centre for Medium-Range
Weather Forecasts

878

Machine learning
at ECMWF:

A roadmap for the
next 10 years

Peter Dueben, Umberto Modigliani, Alan Geer,
Stephan Siemen, Florian Pappenberger,

Peter Bauer, Andy Brown, Martin Palkovi¢,
Baudouin Raoult, Nils Wedi, Vasileios Baousis

January 2021

https://www.ecmwf.int/en/elibrary/19877-machine-learning-ecmwf-roadmap-next-10-years

Machine

network established
and roadmap updated

One machine

learning conference

per year

Objective 1

Explore machine
learning applications
across the weather
and climate prediction
workflow and apply
them to improve
model efficiency and
prediction quality.

JupyterHub and
machine learning
libraries available

learning

Machine learning team
established at ECMWF

Sufficient hardware
for machine learning
established

First machine
learning training course

4 machine learning
benchmark datasets
published

Objective 2

Expand software
and hardware
infrastructure

for machine learning.

loT data used
in operations

Copernicus
ITTs involve
machine learning

2023

Objective 3

Foster collaborations
between domain and
machine learning
experts with the
vision of merging

the two communities.

Objective 4

Develop customised
machine learning
solutions for Earth
system sciences

that can be applied to
various applications
and at scale on
current and future
supercomputing
infrastructure.

2 use cases of machine

learning accelerators for
conventional modelling

5 machine learning
applications integrated
in operational workflow

2024

2025 2026

Machine learning .
considered in
HPC procurement

Comprehensive and
well-documented machine
learning workflow in place

Vi

Objective 5

Train staff and
Member

and Co-operating
State users and
organise scientific
meetings

and workshops.

sion 2031

It is difficult to distinguish
between machine learning
and domain sciences

+ Data handling fully capable

to serve machine learning
needs

Fully supported diagnostic
tools via trustworthy Al

Physical constraints can be
represented in deep learning

Use of machine learning
as easy and normal as
data re-gridding

Unsupervised learning
and causal discovery
used on a regular basis

Machine learning solutions
from end-users integrated
in workflow



Showcase of

Machine Learning Applications
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Machine learning for parametrised physics
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Machine learning for parametrised physics
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Predict Bias from Deterministic Forecast using Machine Learning

Target Bias (Average 2011) Predicted Bias
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Predict Bias from Deterministic Forecast using Machine Learning
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Data-Driven Weather Forecasts
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How to go from physical NWP to fully data-driven NWP

Forecast

\ AT s “ "" 4
o R\ » ] . \ / i X :
T
O ) g :

&

NWP Model

v

Fusion of short-range forecast
with latest observations

Data Driven Model

»
L

Learned from 40
years of analyses

e
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FourCastNet

FourCastNet: NV's DDWP, first to be trained at ambitious 0.25-deg global resolution

— —— — N

= - — g - —,
-,

T —

FourCastNet, Pathak et al. (2022), 0.25°, ~1,000,000 Pixels, ViT+AFNO
GNN, Keisler et al. (2022), 1°, 64,000 Pixels, Graph Neural Networks

DLWP, Weyn et al. (2020). 2°, 16K pixels, Deep CNN on Cubesphere/(2021) ResNet

el Weyn et al. (2019), 2.5° N.H only, 72x36, 2.6k pixels, ConvLSTM

‘ : i
W4  WeatherBench, Rasp et al. (2020). 5.625°, 64x32, 2K pixels, CNN b :._ 1,

b /

== Deuben & Bauer (2018), 6°, 60x30, 1.8K pixels, MLP - ' ‘ <ANVIDIA I

P aa . .
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS https://ardiv.labs.arxiv.org/html/2202.11214
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Pangu Weather

2X4x%x4
Patch ‘
Embedding &

Upper-air Variables
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4x4
= Patch :
Embedding

Surface Variables
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3D Earth-Specific Transformer

Recovery

Layer 1

Earth-Specific Blockx2
(8 x360x 181 x C)

Layer 4

Earth-Specific Blockx2
(8 x360x 181 X% ()

‘lllllll

down-sampling

4

4 o

up-sampling

Upper-air Variables
(13 x 1440 x 721 X 5)

Layer 2

Earth-Specific Blockx6
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Layer 3

Earth-Specific Blockx6
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4% 4
Patch

Recovery

Encoder

Decoder e
—
Surface Variables
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DeepMind GraphCast

a) Input weather state

X<

d) Encoder

b) Predicting the next state

GraphCast

Xt+1

¢) Rolling out a forecast

e) Processor

o
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A very fast and evolving landscape

Huawei — Microsoft —
PanguWeather ClimaX (';l\zlleeI;ﬁ]; ?FrNc(I) A
0.25° hourly ' ur produc
product Forecasting S -
. - ; xtension o
Defining the “ Jarious Iead_ FourCastNet to
o —— More times at various Soherical
=t SPpll accurate resolutions, both plristties
Nov 2022 Jan 2023 Spherical harmonics
Tropical cyclones Global & Limited Area
Jun 2023
2018 Feb 2022 Dec 2022 Apr 2023
Exploring the concept Full medium-range NWP Extensive predictions  7-day+ scores improve
ECMWEF staff K:aisler - GraphNN Deepmind — FengWu — Alibaba — Last months
~500km_ERA5 1°, competitive GraphCast China academia + SwinRDM AIFS
to predict future with GFS 0.25° 6-hour Shanghai Met 0.25° 6-hour FuXi
z500. NVIDIA - _ Bureau product AtmoRep
Similar work FourCastNet Many variables 0.25° 6-hour product FuXi-extreme
from Rasp and Fourier+ , 0.25° la”d lpre%[shure I Sharp spatial NeuralGCM
Weyn. evels wi mproves on features
2(c;lg)e]:|a:rtge; & comparable skill GraphCast for GenCast
__ to IFS. longer leadtimes
efficient than IFS (still deterministic)
impossible to
keep this
figure up
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AIFS V0.1

Comparison of Gaussian grids

Model:

+ (equi-)area weights
+ weighting along plevs (vertical
+ per-variable weights in the los:

- 096 ERAS grid, ~1-degree
- “Level 5" hidden grid, ~2-degree

Variables:

4

13 pressure levels —u, v, w, q, t, z
surface: 2t, 10u, 10v, 2d, sp, msl, sst

2 5 i
=S, &N
& - =
AS§ -

Training:
" e.g. Hidden mesh "16” ~ 40 000 Nodes
Multi-scale interconnectivity

Step 1: 4 days on 16 GPUs to minimise errors for single 6h step ~ 320 000 edges
Step 2: 34 hours on 16 GPUs to minimise errors up to 3 days

Step 3: 4 hours on 16 GPUs minimising errors up to 3 days on operational analysis

Total ~6 days on 16 GPUs

e
& 4 ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 24



Live from Jan 2024.
Resolution 0.25 degrees (4x finer)
New architecture.
Encoder/decoder: graph attention.
Processor: Transformer blocks

attention across regional bands.

SR —



https://www.ecmwf.int/en/about/media-centre/aifs-blog/2024/first-update-aifs

AIFS v0.2 against surface obs.

2m temperature RMSE (K)

5.5

45 -

X3 FERRIY W

2m temperature RMSE (K)

| == Previous AIFS version
--- Pangu-Weather
~~- GraphCast

—— New AIFS version

Forecast Day

4.5 4.

—— New AIFS version

-~ Previous AIFS version
~~- Pangu-Weather

-~- GraphCast

Forecast Day




See ECMWF Newsletter 176

Evaluation Storm Eunice over UK 2022-02-16 00z + 60h
Analysis HRES Fourcastnet
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Tackling Machine Learning in

Physical Disciplines
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Classic Physical Model

Observations

|

Physics

|

Forecast

P oo
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Keisler, 2021




“Physics-informed” Machine Learning

Observations

|

Machine Learning

Physics

|

Forecast

o
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Hybrid Models — Machine Learning Model inside Physics

Observations

|

Physics

Machine
Learning

|

Forecast

o
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Hybrid Models — Machine Learning Pre-conditioning

Observations

Machine
Learning

Forecast

o
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Bonavita, M., & Laloyaux, P. 2020



Hybrid Models — Machine Learning correction of Physics (errors)

Observations

Physics

Machine
Learning

"

Forecast

o
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Bonavita, M., & Laloyaux, P. 2020



Full Machine Learning Model

Observations

|

Machine Learning

|

Forecast

P oo
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Keisler, 2021
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Challenges

Different
philosophies
& toolsets

Integration
difficult

Off-the-mill Reliability
tools not

not proven
sufficient

yet

Scaling up to
petafiop yet to
be learnt



How can you build trust in ML tools and make them reliable?
Trustworthy Al, explainable Al and physics informed machine learning

Ways to incorporate physical knowledge into machine learning models:
- Change the architecture of the neural network

- Formulate the machine learning problem in a physical way

- Close the budget for the output variables

- Correct the outputs to fulfil the constraint

- Incorporate physical constraints into the loss function

Evaluate the machine learning solution for reproducing the correct physics
- Consider specific use cases and weather regimes

- Perform sensitivity tests on the inputs or outputs

- Test for physical reasoning (e.g. for extreme events)

- Benchmarking on existing solutions

Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195-204 (2019).

McGovern, et al. Making the Black Box More Transparent: Understanding the Physical Implications of Machine Learning, Bulletin of
the American Meteorological Society, 100(11), 2175-2199 (2019)

< ECMWF



Are we worried about Hallucinations?

Machine Learning does "exactly what it’s trained for”.

Source tag
present

'

Classified
as horse

No source
tag present

'

Not classified
as horse

Lapuschkin Waldchen Binder A. et al. Nat Commun 2019



https://doi.org/10.1038/s41467-019-08987-4

Will we hallucinate tropical cyclones?

* Probably not.

« ChatGPT and other Large language models
are trained to sounds convincing.

« Data-driven weather forecasts are trained to give accurate forecasts.

* Metrics matter!

< ECMWF



extraordinary claims
require
extraordinary evidence

Carl Sagan




How can you build trust in ML tools and make them reliable?

Explainable Al — Layer Relevance Propagation

LRP Orography LRP Land Sea Mask
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Learn how to combine models and machine learning

Development of Climate Models
Mid 1970s Mid 1980s Early 1990s Late 1990s Early 2000s

Atmosphere Atmosphere Atmosphere

Land Surface

Sulfate Aerosol Sulfate Aerosol
Non-Sulfate

/ Aerosol

N Non-Sulfate
Ooean & Sealoe Sulfur Cycle Ao

Land Carbon
Cycle

QOcean Carbon

Source: https://www.qiss.nasa.qov

Sulfate Aerosol

Non-Sulfate
Ael'OSd



https://www.giss.nasa.gov/

How do you link ML software and conventional models?

HPC environment

I I
I \ \ I
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I . .
1 | Input Data M. ,(::(/)?t:;n A Infero Prediction !
: / « Python 7/ |
I / / i 1
I \ \ | |
I > N [ |
| e e e e e e e e e e e e e e e e e — — — — — —— I
I
: Model loaded
Offline training , Into Infero
I
[Trained ML modeI\ (Serialized ML ModeI\
+ Keras Conversion tools «  ONNX format
« Tensorflow  pF-============-= +| = Tflite format
* Pytorch  TRT format
1\ J \_ J
&S ECMWF

Bonanni, Quintino
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The sphere and unstructured grids

Pressure (hPa) CMAM level

5 0007 1 Thermosphere

0.001

00l —————— 449
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— 0
W= Stratosphere

km 100 —
200 325 450
[ |

Source: Willem Deconinck

Source: Polavarapu et al. 2005

Longitude/latitude vs. reduced Gaussian cubic octahedral grid
Problem: Find a three-dimensional machine learning solution that work on unstructured grids.

Geometric deep learning and Graph Neural Networks may help to solve this problem



What is the single most important development to achieve progress?

Machine learning
domain scientists

Machine learners



Code for Earth in one slide

" "852  Code for Earth — Quick facts

% » key innovation action run by ECMWF, supported by Copernicus and Destination Earth, the European
Environment Agency, Helmholtz-Zentrum Hereon and IFAB.

» welcomes each summer individuals and developer teams from different backgrounds in earth
sciences, computer sciences and software development to work on solutions for pre-defined challenges

» It's about innovation, collaboration and open source software development
» Grants selected teams, that successfully complete their projects, a €5,000 stipend.

s sess  Code for Earth — 3 Stream and 19 challenges, 64 mentors
',/ » Joint partner challenges with CESOC / University of Bonn, European Environment Agency, Helmholtz-
Zentrum Hereon and University of Reading
* Stream 1 - Data visualization and visual narratives
* Stream 2 — Machine Learning for Earth Sciences applications R CODE

« Stream 3 — Software development for Earth Sciences applications FOR EARTH

CALL FOR PARTICIPATION

s aa) Useful links and further information

" _esas 29 February - 09 April
“.%7 + Upcoming Q&A Webinar, 21. March 2024, register on our website
'I/ . . Browse through the Code for Earth 2024 challenges
° Code for Earth Website — https://codeforearth.ecmwf.int/ on GitHub. Ask questions and together with ECMWF
. . mentors, you can tailor your submission. Submit
+ Submit your proposal by 09. April 2024 your proposal by 09 April 2024,

.. i EOORDEiRTH w ECMWF S ECMWF  [] mwmer Goomoss  [£3]5%2.. Destination Earth

from 29 Feb B
« 18 Sep X



https://github.com/ECMWFCode4Earth/challenges_2024/labels/Data%20Visualisation%20and%20visual%20narratives
https://github.com/ECMWFCode4Earth/challenges_2024/labels/Machine%20Learning
https://github.com/ECMWFCode4Earth/challenges_2024/labels/Software%20Development
https://codeforearth.ecmwf.int/

Opportunities: A high-level view how ML/AI will be used in Earth system science

Improve understanding

Fuse information content from different datasources
Unsupervised learning

Causal discovery

Al powered visualisation

Uncertainty quantification

Speed up simulations and green computing

Emulate model components

Port emulators to heterogeneous hardware

Use reduced numerical precision and sparse machine learning
Optimise HPC and data workflow

Data compression/Tethering

Improve models

Learn components from observations

Correct biases

Quality control of observations and observation operators
Feature detection

Link communities

Health — e.g. for predictions of risks

Energy — e.g. for local downscaling

Transport — e.g. to combine weather and loT data
Pollution — e.g. to detect sources

Extremes — e.g. to predict wild fires



Opportunities: A story of uncertainties

IFS - total precip IFS - convective precip
i =V =V

Orography

 Map IFS model data at ~10 km
resolution to NIMROD precipitation

-

observations.at ~1 km res.olution 01 05 20 100300 01 05 20 10.030.0 500 1000
» Test Generative Adversarial Networks Rain rate [mm h1] Rain rate [mm h-1]
GANSs) and Variational Autoencoders
( ) NIMROD - ground truth GAN prediction GAN - mean prediction
- =7 =7

(VAs) —
~ + Generate ensembles to represent the <%
uncertainty of the mapping.

601 05 20 100300 01 05 20 100300 01 05 20 10.030.0

Rain rate [mm h~1] Rain rate [mm h~1] Rain rate [mm h~1]

Harris, McRae, Chantry, Dueben, Palmer



Opportunities: Make expensive things cheap via emulation

To represent 3D cloud effects for radiation (SPARTACUS) within simulations of the Integrated Forecast Model is
four time slower than the standard radiation scheme (Tripleclouds)

Can we emulate the difference between Tripleclouds and SPARTACUS using neural networks?

[n] 30 s:gnal change to longwave heatmg rate (troposphere) (o] 3D predlctnon change to longwave heatmg rate (troposphere)

T s D2 ..

©

- 4

0.0 P
o
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-0.2

01 7

o

4

0.0 <
-0.1 5%

90°S 75°S 60°S 455 305 15°S O°N 15°N 30°N 45N 60°N 75°N 90°N 90°S 75°S 60°S 45°S 30°S 15°S O°N 15°N 30°N 45°N 60°N 75°N 90°N
Latitude Latitude

Rel. Cost | Tripleclouds | SPARTACUS | Neural Network | Tripleclouds+Neural Network
o 4.4 0.003 1,003

Meyer, Hogan, Dueben, Mason JAMES 2022



Al-Models Plugins for FOSS Data-Driven

e0e@ e [2211.02556] Pangu-Weather: / X | + \‘k‘

« > C O B httpsi/jarxiv.org/abs/2211.02556 by
@ Getting Started @ Ersteschrite @ @ B @ & Oe DE O

g)) Cornell University @ || X 1202m214) Fourcastet: G X | +

O B nttps://arxiv.org/abs/2202.11214

ar <iV > physics > arXiv:2211.02556

Physics > Atmospheric and Oceanic Physics

ng) Cornell University
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[ XON ] @ > [221212794) GraphCast: Learn X | +

& = O 8 https:/farxiv.orgfabs/2212.12794
@ Getting Started @ Ersteschritte @ @ N @ & DO«

[submitted on 3 Nov 2022]
Pangu-Weather: A 3D High-Resolution Mode
Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, Qi Tia|

In this paper, we present Pangu-Weather, a deep learning based system for fa| Physics > Atmospheric and Oceanic Physics
environment by downloading 43 years of hourly global weather data from the | s,bmited on 22 eb 2022]

with about 256 million parameters in total. The spatial resolution of forecast i o -

importantly, for the first time, an Al-based method outperforms state-of-the] FOUFCastNet: A Global Data-driven High-resolu
weighted RMSE and ACC) of all factors (e.g., geopotential, specific humidity, Neural Operators

There are two key strategies to improve the prediction accuracy: (i) designing
(pressure level) information into cubic data, and (ii) applying a hierarchical ten] Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashes TR S S .
forecast, Pangu-Weather shows great for short to med Zongyi Li, Kamyar Azizzadenesheli, Pedram | deh, Karthik Kashinath, | Computer Science > Machine Learning nell University the Simons Foundation and Stockholm Unlversiy:

g 9
Allfields M search

Help | Advanced Search

'K ) @ || > 12306.03838] Spherical Fourie: X | +

« > C O B https:/jarxiv.org/abs/2306.03838

@ ceting started. @ Erseseive @ O B © ® Ow DE OF

supports a wide range of downstream forecast scenarios, including extreme
in real-time. Pangu-Weather not only ends the debate on whether Al-based m
improving deep learning weather forecast systems.

[Submitted on 24 Dec 2022 (v1), last revised 4 Aug 2023 (this version, v2)]

FourCastNet, short for Fourier Forecasting Neural Network, is a global data-driven weat ) E .
predictions at 025 resolution. FourCastNet accurately forecasts high-resolution, fast-tf GraphCast: Learning skillful medium-rangg
atmospheric water vapor. It has important implications for planning wind energy resours
tropical cyclones, and atmospheric rivers. FourCastNet matches the forecasting accurac

ar (1v > cs > arXiv:2306.03838

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirn:

Comments: 19 pages, 13 figures: the first ever Al-based method that outperforms traditional R i
- osen, Weihua Hu, Alexander Merose, Stephan Hoyer, George Holl. i i i
Subjects:  Atmospheric and Oceanic Physics (physics.ao-phy; Artificial Intelligence (cs.Al Numerical Weather Prediction (N\WP) model, at short lead times for large-scale variables, } P! Y g Computer Science > Machine Learning Download:
Citeas:  arXiv:2211.02556 [physics.a0-ph] including precipitation. FourCastNet generates a week-long forecast in less than 2 secof ~Battaglia T o
o
(or arkiv:2211.02556v1 [physics.a0~ph for this version) the creation of rapid and inexpensive large-ensemble forecasts with thousands of ense » vomitedon &Jun ) ) ) « PDF
hitpsz/ /dol.org/10.48550/arXiv.2211.02556 @ data-driven deep learning models such as FourCastNet are a valuable addition to the m Global medium-range weather forecasting is critical to decision-making ac| - Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere « Other formats
increased compute resources to improve forecast accuracy, but cannot dire} (license)
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