Generative machine learning models
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Generative models

« Most of today’s poster child applications of deep learning are
generative models

« LLMs: (Chat)-GPT, Gemini, Llama, Mistral, ...
« Image generation models: Stable diffusion, Dall-E, ...
 Video generation: Sora, ...

= Long context

Sherlock Jr. (1924), Directed by f
44:33 mins
684K tokens [

>
+ Model output

The piece of paper removed from
the person's pocket is a pawn ticket

from L. Goldman + Co. Pawn
okers, located at 800 Main St. The ]
jated 10=23/1924 and
chain

& User prompt

+ Model output

&
What is the 5 B . @
timecode when This happens at timecode 15:27

) '
£ L

3 | this happens?

e https://openai.com/dall-e-2

https://storage.googleapis.com/deepmind-
media/gemini/gemini_v1_5_report.pdf
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Generative models

« Fundamental idea: learn probability distribution

p(z) = py(x)

 Distribution: natural language, natural images, atmospheric
states, ..
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Generative models

« Fundamental idea: learn probability distribution

p(x) = po(x)
 Distribution: natural language, natural images, atmospheric
states, ..
« Neural network provides numerical model for distribution
« Unparametric (non-Gaussian etc)

* Network outputs (Monte Carlo-style) samples from the
distribution since no explicit representation is possible

« Learned by providing samples from distribution
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Generative models

Fundamental idea: learn probability distribution

p(x) = po(x)
Distribution: natural language, natural images, atmospheric
states, ..
Neural network provides numerical model for distribution
« Unparametric (non-Gaussian etc)

* Network outputs (Monte Carlo-style) samples from the
distribution since no explicit representation is possible

« Learned by providing samples from distribution

Often we learn a joint or conditional probability distribution to
have control over the output after learning

p(?/? Q?) ~ pQ(yv :C)
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« MNIST: digit recognition dataset (for automatic postal code
classification)

Simple Example: MNIST
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Simple Example: MNIST

« MNIST: digit recognition dataset (for automatic postal code
classification)

« What should our training objective be?
* Natural choice: integer in [0, 9]
« Network operates internally on hidden/latent states h € R"
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Simple Example: MNIST

« MNIST: digit recognition dataset (for automatic postal code
classification)

« What should our training objective be?
* Natural choice: integer in [0, 9]
« Network operates internally on hidden/latent states h € R"

neural

network

\ 4

\ 4

linearized last
image hidden state
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Simple Example: MNIST

« MNIST: digit recognition dataset (for automatic postal code
classification)

« What should our training objective be?
* Natural choice: integer in [0, 9]
« Network operates internally on hidden/latent states h € R"

neural

9 o network ] LPhLJ_, b < [07 9}

P c RN

\ 4

\ 4

linearized last
image hidden state
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Simple Example: MNIST

« MNIST: digit recognition dataset (for automatic postal code
classification)

« What should our training objective be?
* Natural choice: integer in [0, 9]
« Network operates internally on hidden/latent states h € R"

9 . . neural > — y € 10,9
network
output probability
linearized last for each digit
image hidden state
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Simple Example: MNIST

« MNIST: digit recognition dataset (for automatic postal code
classification)

« What should our training objective be?
* Natural choice: integer in [0, 9]
« Network operates internally on hidden/latent states h € R"

9 - > > neural > » — y E I:O7 9}
network
output probability
linearized last for each digit
image hidden state
p(ylz)
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Simple Example: MNIST

« MNIST: digit recognition dataset (for automatic postal code
classification)

« What should our training objective be?
* Natural choice: integer in [0, 9]
« Network operates internally on hidden/latent states h € R"

=
-

9 — > neural > > c:)é —> y - I:O7 9}
network &
=
S)
0p

output probability

linearized last for each digit
image hidden state

Pc RlOXN
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Recap: softmax

Softmax(x); = — ,reR"

x Softmax(x)

0.40 ~

2.0 1 0.35 A

0.30 -

0.25 -

0.20 1

0.15 1

0.10 -

0.05 A

0.00 -
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Simple Example: MNIST

« Training: how can we train the probability distribution—we only
have one label for each image?

known label: 4

v

neural

\ 4

9
network

Softmax(Ph)

output probability
linearized

last for each digit
image hidden state
g P c RlOXN
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Simple Example: MNIST

« Training: how can we train the probability distribution—we only
have one label for each image?

known label: 4 . ]

=

&

9 — . neural > =
network &

=

)

P

output probability
linearized last for each digit
image hidden state

Pc RlOXN
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Simple Example: MNIST

« Training: how can we train the probability distribution—we only
have one label for each image?

Kronecker distribution d; 1abel

known label: 4 ]

v

\ 4

9 - neural
network

output probability
linearized last for each digit

hidden state
Pc RlOXN

Softmax(Ph)

image
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Simple Example: MNIST

« Training: how can we train the probability distribution—we only
have one label for each image?

Kronecker distribution d; 1abel
known label; 4 B
Loss:
compare
probability
= distribution
R
N——"
9 I > neural > - - S
network =
&=
o
N

output probability
linearized last for each digit
image hidden state
g Pc RlOXN
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Simple Example: MNIST

« Cross-entropy loss: the workhorse for discrete generative models

Loss(label, z) = log (o
ossae,x:og( )
Ziexz
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Simple Example: MNIST

« Cross-entropy between discrete prob. distributions p, q

H(p,q) = _Ep[_ IOQQ}
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Simple Example: MNIST

« Cross-entropy between discrete prob. distributions p, q

H(p,q) = _Ep[_ logq}

From information theory: roughly, discrepancy between q
(observed) and p (true) in bits

(can also be written in terms of Kullback-Leibler divergence)
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Simple Example: MNIST

« Cross-entropy between discrete prob. distributions p, q

H(p,q) = _Ep[_ logq}

— Zp(:lj) log (g(z)) (def of expectation)

x
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Simple Example: MNIST

« Cross-entropy between discrete prob. distributions p, q

H(p,q) = _Ep[_ logq}

= Z p(z)log (q(x)) (def of expectation)

— Z 0 1abe1 10g (¢(z))  (Kronecker dist for label)
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Simple Example: MNIST

« Cross-entropy between discrete prob. distributions p, q

H(p,q) = _Ep[_ logq}

= Z p(z)log (q(x)) (def of expectation)
= Z 0 1aber 10g (¢(z))  (Kronecker dist for label)

= log (q(%1abe1)) (Properties of Kronecker dist)
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Simple Example: MNIST

« Cross-entropy between discrete prob. distributions p, q

H(p,q) = _Ep[_ logq}

= Z p(z)log (q(x)) (def of expectation)
= Z 0 1aber 10g (¢(z))  (Kronecker dist for label)

= log (q(%1abe1)) (Properties of Kronecker dist)

eajlabel

D ;€

= log (q is given by softmax)
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Simple Example: MNIST

« Mathematically deep subject:

A.2. Consistency Distillation

Theorem 1. Let At := maxpeqi, N—1]{[tn+1 — tnl}, and f(-, ; @) be the consistency function of the empirical PF ODE
in Eq. (3). Assume fg satisfies the Lipschitz condition: there exists L > 0 such that for all t € [¢,T], x, and y, we have
| fo(x,t) — fo(y,t)lly < L||x — yll,. Assume further that for all n € [1, N — 1], the ODE solver called at t,, 1 has local
error uniformly bounded by O((tn+1 — tn)P!) withp > 1. Then, if LY, (0, 0; ¢) = 0, we have

Sup Ifo(x,tn) — £(x,tn; @)[2 = O((AL)?).

Proof. From L{(6,0; ¢) = 0, we have

EévD(ov 07 ¢) = ]E[)\(tn)d(fg (xtn+1 ) t‘n+1)7 fe()/\(g{‘:1 ) tn))] =0. (1

According to the definition, we have p;, (X, ) = Daaa(X) ® N (0, t2I) where t,, > € > 0. It follows that p;  (x;,) > 0 for
every x;, and 1 < n < N. Therefore, Eq. (11) entails

A(tn)d(fo (Xt,r tntn), Fo (%7, 1)) = 0. (12)
Because A(-) > 0 and d(x,y) = 0 < x =y, this further implies that
Fo(Xtnrstns1) = Fo (X7, tn). (13)

Now let e,, represent the error vector at ¢,,, which is defined as
ey = fﬂ(xtna tn) - f(xtna tn; ¢)
We can easily derive the following recursion relation

€n+1 = fe(xtn+17tn+1) - f(xtn+1atn+1; ¢)

Song et al., Consistency Models, 2023, https://arxiv.org/pdf/2303.01469.pdf
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Simple Example: MNIST

« Training: how can we train the probability distribution—we only
have one label for each image?

Kronecker distribution d; 1abel

known label: 4 ]«

v

cross-entropy
loss

\ 4

9 - neural
network

Softmax(Ph)
T

output probability
for each digit

Pc RlOXN
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Simple Example: MNIST

« Training: how can we train the probability distribution—we only
have one label for each image?

Kronecker distribution d; 1abel

known label: 4 0 <

v

cross-entropy
loss

\ 4

9 - neural
network

Softmax(Ph)
T

output probability
—— for each digit

po(y|T) P e RN

e
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Simple Example: MNIST

« But how can we learn a non-degenerate distribution p when we
we only have degenerate labels?
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Simple Example: MNIST

« But how can we learn a non-degenerate distribution p when we
we only have degenerate labels?

« Training:

« Monte Carlo approximation of expected value over data
distribution (as approximated by training data set)

« Training data contain sufficient number of similar images with
different labels. Overall loss/expectation is minimized by
learning well calibrated probability distribution
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Simple Example: MNIST
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Simple Example: MNIST

/\\//\\ )

8l
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Simple Example: MNIST

I
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Simple Example: MNIST
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Simple Example: MNIST

« Training: how can we train the probability distribution—we only
have one label for each image?

Kronecker distribution d; 1abel

known label: 4 0 <

v

cross-entropy
loss

neural

\ 4

E, 9 .
network

Softmax(Ph)
T

output probability
—— for each digit |

po(y|T) P e RN
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Large language models

Transformer block: iterate M times

attention block
" —
house [ |
)= B
—>
A

-

A
r

skip

Y

output probability for each
word in the corpus (100K in
state-of-the-art models)
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Large language models

Transformer block: iterate M times

attention block
My [ ] ’-
house [ |
i= B
—>
A

Y

>

skip

auto-regressive iteration (time-stepping) to generate long outputs
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Large language models

Transformer block: iterate M times

attention block
My [ ] ’-
house [ |
i= B
—>
A

>

skip

Y

auto-regressive iteration (time-stepping) to generate long outputs

fine-tuning (e.g. human feedback reinforcement learning) to obtain
well calibrated probability distribution
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But why probabilistic modeling?

« Essentially all poster child applications of deep learning are
probabilistic models

« Natural language processing and computer vision are
theories without useful conventional models

* Probabilistic models are well suited for problems where
ambiguity or uncertainty or stochasticity play a role

« Can be made rigorous using Bayesian modeling and
expectation maximization
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Generative adversarial networks (GANSs)
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Generative adversarial networks (GANSs)

Deep learning model employing unsupervised learning with the aim of discovering
hidden patterns within input data and generate realistic output.

Composed of two competing sub-models:
- the Generator (G) learns to generate realistic-looking (fake) samples

- the Discriminator (D) learns to distinguish fakes from real samples

g Binary
e:;:th 'gi - Classification
g (Real/Fake)
Discriminator
Generator
[ . Generated
H Example
1 %

Latent Vector

40
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Generative adversarial networks (GANS)

Generator Discriminator

Ty A
R g Nt AL bt
, W

pe OO

, ; _ Fake Money
Counterfeiter prints fake money. It is labeled as fake for
police training. Sometimes, the counterfeiter attempts to The police are trained to distinguish between.
fool the police by labeling the fake money as real. Sometimes, the police give feedback to the
counterfeiter about why the money is fake.
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GAN training: It's all about competition !

Two-player minimax game with a value function V(D, G):

m(%n mgx V(D,G) = Epnpy (03108 D(®)] + Ernp, (2)llog(l — D(G(2)))]

G aims to minimize V(D,G) while D tries to maximize it. The game stops when
Nash Equilibrium is reached.

Some notations ...

wavpdata(w) Expected value over all real instances.
D(‘L') Discriminator score on the real instance.

Ezwpz(z) Expected value over all fake instances.

G(z) Generator output given a random noise.

D(G<Z)) Discriminator score on the fake instance.

L
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GAN training: It's all about competition! (but also, collaboration)

Discriminator training (frozen G)

&= Backpropagation
o9
%8
=h
Real Inages ——» Sample |— Discriminator T» g
)
o
]
B
= —
£ / 2 g
g —» Generator > Sample @ o
= 2
S g
['4

Generator training (frozen D)

\

Real Images P Sample

ss0|

JojeulwLIASIg

/

=

Generator >

Sample P Discriminator

Random Input

@ Backpropagation
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sS0|
10jeI8UdD

G is frozen during training step
of D.

D classifies both real and fake
data and is penalized for
incorrect classification.

D is frozen during the generator's
G training step.

Gradients from the discriminator
are still passed to the generator.
Tight collaboration ensures G
learns from D's feedback.

The generator is penalized for
producing samples correctly
classified by D.

43
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First Many attempts Even more
attempt later attempts later

S @ K. )

GENERATOR

DISCRIMINATOR DISCRIMINATOR DISCRIMINATOR

P aa
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Rapid evolution in image quality

StyleGAN
GAN DCGAN  CoGAN ProGAN PSS
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A (brief) GAN roadmap...
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Developments in the first years ...

2014: Introduction by lan Goodfellow and colleagues Goodfellow et al. 2014
2014: Introduction of the Conditional GAN by Mirza et al 2014

2015: Introduction of deep convolutional networks for both generator and
discriminator by Radford et al. 2015

2017: Introduction of Wasserstein GAN (WGAN) by Arjovsky et al. 2017

* Introduction of the Wasserstein Loss Function based on the Wasserstein distance,
also known as Earth Mover's distance (EM distance), as a measure of the difference
between the generated and real data distributions.

* Introduction of Lipschitz continuity constraint on Discriminator with Gradient
Penalty. Alternative weight normalisation for Lipschitz constraint explored by Miyato et
al. 2018 in SNGAN using spectral normalization.

» Greater training stability and improved Generator convergence

2017: Introduction of CycleGAN for image-to-image translation by Zhu et al. 2017

2018: Introduction of BigGAN by Brock et al. 2018
« Massive scale, both in terms of model size and dataset used for training (ImageNet).
Increasing the scale of GANs could lead to improved image quality and diversity.
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https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1802.05957
https://arxiv.org/abs/1802.05957
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1809.11096

StyleGAN Series (SOTA)

« 2017: Introduction of ProGAN by
Karras et al. 2018.

¢ ProgreSSive grOWing Latent z € Z Latent z € Z ) Noise
Synthesis network g
. | Normalize |
« 2018 - 2019 - 2021: Introduction of Mapping

network f
N2

Fully-connected

PixelNorm

PixelNorm

StyleGAN, StyleGAN2 and
StyleGAN3 by Karras et al. 2018,
Karras et al. 2019 and Karras et al.
2021 .
« Style transfer at different v
resolution levels
« Automatically learned,
unsupervised separation of
high-level attributes
* Introduction of an intermediate
latent space ‘W’ that allows

8x8 @
better disentanglement of the

latent factors of variation (a) Traditional (b) Style-based generator
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https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1912.04958
https://arxiv.org/abs/2106.12423
https://arxiv.org/abs/2106.12423

StyleGAN Series (SOTA)

» The separation of different resolution attributes and the disentanglement of the
latent factors of variation enables impressive image-editing applications:

Original

Pose Age Expression Eyeglasses

InterFaceGAN by Shen et al. 2020

Check also the works of Alaluf et al. 2022 and previous works by the same authors
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Bad news for GANs in 2021...

Diffusion Models Beat GANs on Image Synthesis

Prafulla Dhariwal*
OpenAl
prafulla@openai.com

Alex Nichol*
OpenAl
alex@openai.com

Abstract

‘We show that diffusion models can achieve image sample quality superior to the
current state-of-the-art generative models. We achieve this on unconditional im-
age synthesis by finding a better architecture through a series of ablations. For
conditional image synthesis, we further improve sample quality with classifier guid-
ance: a simple, compute-efficient method for trading off diversity for fidelity using
gradients from a classifier. We achieve an FID of 2.97 on ImageNet 128x 128,
4.59 on ImageNet 256x256, and 7.72 on ImageNet 512x512, and we match
BigGAN-deep even with as few as 25 forward passes per sample, all while main-
taining better coverage of the distribution. Finally, we find that classifier guidance
combines well with upsampling diffusion models, further improving FID to 3.94
on ImageNet 256 X256 and 3.85 on ImageNet 512x512. We release our code at
https://github.com/openai/guided-diffusion.

Key takeaways

Pretty convincing results...

Model FID sFID Prec Rec Model FID sFID Prec Rec
LSUN Bedrooms 256 x256 ImageNet 128 x128

DCTransformer' [42] 640 6.66 044 0.56 BigGAN-deep [5] 6.02 7.18 0.86 035
DDPM [25] 489 9.07 0.60 045 LOGANT [68] 3.36

IDDPM [43] 424 821 0.62 046 ADM 591 5.09 0.70 0.65
StyleGAN [27] 235 6.62 0.59 0.48 ADM-G (25 steps) 598 7.04 0.78 0.51
ADM (dropout) 190 5.59 0.66 0.51 ADM-G 297 5.09 0.78 0.59
LSUN Horses 256 <256 ImageNet 256 X256

StyleGAN2 [28] 384 6.46 0.63 048 DCTransformer' [42] 36.51 824 036 0.67
ADM 295 594 069 0.55 VQ-VAE-21% [51] 31.11 17.38 0.36 0.57
ADM (dropout) 257 6.81 0.71 0.55 [DDPMI [43] 1226 542 070 0.62

SR37# [53] 11.30

LSUN Cats 256256 BigGAN-deep [S] 695 7.36 0.87 0.28
DDPM [25] 17.1 124 0.53 048 ADM 1094 6.02 0.69 0.63
StyleGAN2 [28] 725 633 0.58 043 ADM-G (25 steps) 544 532 0.81 049
ADM (dropout) 557 6.69 0.63 0.52 ADM-G 459 525 082 0.52
ImageNet 64 x 64 ImageNet 512x512

BigGAN-deep* [5] 406 396 0.79 0.48 BigGAN-deep [5] 843 8.13 0.88 0.29
IDDPM [43] 292 379 074 0.62 ADM 2324 10.19 0.73 0.60
ADM 261 3.77 073 0.63 ADM-G (25 steps) 841 9.67 0.83 047
ADM (dropout) 207 429 074 0.63 ADM-G 772 657 087 0.42

‘StyleGAN sets new standards for generative modeling regarding image quality and
controllability. However, StyleGAN’s performance severely degrades on large unstructured

datasets such as ImageNet.’ [1]

— 2022 Introduction of StyleGAN-XL by [1]
Scaled StyleGANS3 architecture to
ImageNET
» Competitive scores on ImageNet
against Diffusion Models
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Table 2. Image Synthesis on ImageNet. Empty cells indicate that the model was not available and the respective metric not evaluated in the original work.

Model FID| sFID| rFID] IST PrT RecT Model FID| sFID| rFID| IST PrT RecT

Resolution 128? Resolution 2562

BigGAN 6.02 7.18 6.09 14583  0.86 0.35 StyleGAN2 49.20

CDM 3.52 128.80 128.80 BigGAN 6.95 7.36 75.24  202.65 0.87 0.28

ADM 591 5.09 13.29 9331  0.70 0.65 CDM 4.88 158.70 158.70

ADM-G 2.97 5.09 3.80 14137  0.78 0.59 ADM 10.94 6.02 125.78 100.98  0.69 0.63

StyleGAN-XL 1.81 3.82 1.82 200.55 0.77 0.55 ADM-G-U 3.94 6.14 11.86 21584 0.83 0.53
StyleGAN-XL 2.30 4.02 7.06 265.12 0.78 0.53

Resolution 5122 Resolution 1024°

BigGAN 8.43 8.13 312.00 177.90  0.88 0.29 StyleGAN-XL 2.52 4.12 413.12 260.14 0.76 0.51

ADM 23.24 10.19 561.32 58.06 0.73 0.60

ADM-G-U 3.85 5.86 210.83  221.72 0.84 0.53

StyleGAN-XL 241 4.06 51.54 267.75 0.77 0.52

[1] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets Sauer et al. 2022



https://arxiv.org/abs/2202.00273

Diffusion Models vs GANs in 2024

 Nowadays, GANs have fell out of favour due to the incredible success of Diffusion
Models in high-quality image synthesis based on text prompts.

« Diffusion Models have been more successful on training against unstructured
and massively diverse, large-scale datasets.

« State-of-the-art GANs can be trained with smaller structured datasets and still
deliver good results. Furthermore, the latent space control that StyleGANs offer
can be an intriguing application.

- Diffusion Models offer a more interpretable and explicit training process.

* GAN training involves a minmax game between two sub-models and stability and
converge can be an issue (depending on dataset).

 GANs main advantage is inference speed (one network pass to generate an image
vs multiple needed for denoising). This is changing fast in the favour of Diffusion
Models.
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GANSs: Applications
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Downscaling / Super-Resolution

Stochastic Super-Resolution for Downscaling Time-Evolving

Atmospheric Fields with a Generative Adversarial Network

Jussi Leinonen, Daniele Nerini, Alexis Berne in 2019

» Stochastic super-resolution GAN to generate ensembles of time-evolving high-
resolution atmospheric fields for an input consisting of a low-resolution sequence

of images of the same field.

Real

2017-07-24 10:00 UTC

Downsampled

Reconstructed

-
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https://arxiv.org/abs/2005.10374
https://arxiv.org/abs/2005.10374

Downscaling / Super-Resolution

A Generative Deep Learning
Approach to Stochastic Downscalin

of Precipitation Forecasts

Lucy Harris, Andrew T. T. McRae, Matthew
Chantry, Peter D., Tim N. Palmer 2022

» Used GANSs to produce ensembles of
reconstructed high-resolution precipitation field:
increasing the accuracy and resolution of
comparatively low-resolution input from a
weather forecasting model, using high-resolutic
radar measurements as a "ground truth".

Example predictions for different input conditions

2019-06-07 21Z 2019-05-01 18Z 2019-08-051Z  2019-01-27 4Z

IFS

TRUTH

GAN pred 1

RainFARM

ecPoint mean

Det CNN

Rain rate [mm h~1]
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https://arxiv.org/abs/2204.02028
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https://arxiv.org/abs/2204.02028
https://arxiv.org/abs/2204.02028

Downscaling / Super-Resolution

Increasing the accuracy and resolution of precipitation forecasts

using deep generative models
llan Price, Stephan Rasp 2022

» Using fine-grained radar observations as ground truth, a conditional Generative
Adversarial Network -- coined CorrectorGAN — is trained via a custom training
procedure and augmented loss function, to produce ensembles of high-resolution,
bias-corrected forecasts based on coarse, global precipitation forecasts in addition to
other relevant meteorological fields

TIGGE Forecast CorrectorGAN Sample 1 CorrectorGAN Sample 2 CorrectorGAN Sample 3 CorrectorGAN Sample 4

[ww] uonenwnaoe uoneydnaid yg
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Reconstruction of physical fields

Reconstruction of Cloud Vertical f
Structure With a Generative

Adversarial Network

Jussi Leinonen, Alexandre Guillaume, Tianle
Yuan in 2019

nerated

Gel

enerated
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nerated

Ger G
Altitude [km]  Altitude [km] Altitude [km] Altitude [km] Altity

* CGANs were used to generate two- _ ¥ o
dimensional cloud vertical structures that XX T AR LR AR R XL

would be observed by the CloudSat = yt,g%;;.%—\%qrwﬂ%;zz i
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https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL082532
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https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL082532

Precipitation nowcasting

— ’ﬁ ¢ Ti30min  T+60min  T+90min
lE o] e 2l ~(c) | 2 y 4

Skillful Precipitation _ f"] = ) @ Eé

Nowcasting using Deep - LJ il Wit B L

Generative Models of Radar o ew. [ o

Ravuri et al. 2021

Gen. Method

* Deep Generative Model for the >
probabilistic nowcasting of precipitatio '
from radar. realistic and spatio- ” =
temporally consistent predictions over ',,-s‘-‘ 1.4 &

regions up to 1536 km x 1280 km and
with lead times from 5-90 min ahead.

0 s 10 15
Precip (mm/h)
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Ensemble members Generation

» Producing realistic climate data with

generative adversarial networks
Camille Besombes, Olivier Pannekoucke, Corentin

Inversion Perturbation Generation
H

et eneraji
= =
Lapeyre, Benjamin Sanderson, and Olivier Thual [ % [ 6] % @ WFT
* Multivariate Emulation of Kilometer-Scale
Numerical Weather Predictions with A Physhecl Space. Al s ohysical Space
Generative Adversarial Networks: A Proof of
Concept

Clément Brochet, Laure Raynaud, Nicolas
Thome, Matthieu Plu, and Clément Rambour 2023 = 1

Random generated samples
GAN GAN

u (m/s)

* Enriching Atmospheric Ensemble
Forecasts using Conditioned State-of-the-
art Generative

Models.
Clément Brochet, Gabriel Moldovan, Laure Raynaud
(work in progress)
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https://npg.copernicus.org/articles/28/347/2021/npg-28-347-2021-discussion.html
https://npg.copernicus.org/articles/28/347/2021/npg-28-347-2021-discussion.html
https://npg.copernicus.org/articles/28/347/2021/npg-28-347-2021-discussion.html
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Diffusion models
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Diffusion models

« State-of-the-art for generative image and video models
« GenCast demonstrates potential for forecasting
« Misnomer: it’s a training protocol and not a model (network)
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Diffusion models

« State-of-the-art for generative image and video models

« GenCast demonstrates potential for forecasting

« Misnomer: it’s a training protocol and not a model (network)
* |dea:

p(z,y)
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Diffusion models

« State-of-the-art for generative image and video models

« GenCast demonstrates potential for forecasting

« Misnomer: it’s a training protocol and not a model (network)
* |dea:

N(0,1) p(z,y)
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Diffusion models

« State-of-the-art for generative image and video models

« GenCast demonstrates potential for forecasting

« Misnomer: it’s a training protocol and not a model (network)
* |dea:

map from Gaussian to target distribution

T

N(0,1) p(z,y)
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Diffusion models

« State-of-the-art for generative image and video models

« GenCast demonstrates potential for forecasting

« Misnomer: it’s a training protocol and not a model (network)
* |dea:

map from Gaussian to target distribution

T

N(0,1) p(x,y)
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Diffusion models

« State-of-the-art for generative image and video models

« GenCast demonstrates potential for forecasting

« Misnomer: it’s a training protocol and not a model (network)
* |dea:

map from Gaussian to target distribution

backward flow

N(0,1) p(x,y)
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Diffusion models

« State-of-the-art for generative image and video models

« GenCast demonstrates potential for forecasting

« Misnomer: it’s a training protocol and not a model (network)
* |dea:

map from Gaussian to target distribution

backward flow

stochastic differential equation

N(0,1) p(z,y)

forward flow
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Diffusion models

« State-of-the-art for generative image and video models

« GenCast demonstrates potential for forecasting

« Misnomer: it’s a training protocol and not a model (network)
* |dea:

map from Gaussian to target distribution

backward flow

stochastic differential equation

N(0,1) p(z,y)

forward flow
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Diffusion models

« State-of-the-art for generative image and video models

« GenCast demonstrates potential for forecasting

« Misnomer: it’s a training protocol and not a model (network)
* |dea:

map from Gaussian to target distribution

backward flow

stochastic differential equation

N(0,1) p(z,y)

forward flow
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Diffusion models

« State-of-the-art for generative image and video models

« GenCast demonstrates potential for forecasting

« Misnomer: it’s a training protocol and not a model (network)
* |dea:

map from Gaussian to target distribution

././'\//t\'\'\“
po(Ti—1|x, 1)

N(0,1) p(z,y)

forward flow
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Diffusion models

« State-of-the-art for generative image and video models

« GenCast demonstrates potential for forecasting

« Misnomer: it’s a training protocol and not a model (network)
* |dea:

map from Gaussian to target distribution big step: very hard
m small step: easy
po(Ti—1|Ti, 1)

N(0,1) p(z,y)

forward flow
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Diffusion models

« State-of-the-art for generative image and video models

« GenCast demonstrates potential for forecasting

« Misnomer: it’s a training protocol and not a model (network)
* |dea:

map from Gaussian to target distribution -> consistency models

././'\//t\'\'\“
(x )

po(Ti—1|Tiyi

N(0,1) p(z,y)

forward flow

Song et al., Consistency Models, https://arxiv.org/abs/2303.01469
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Diffusion models

Figure from https://theaisummer.com/static/d007d60f773b61f4585cbec3869490d5/a878e/score-sde.png
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Diffusion models

Forward SDE (data — noise)

dx = f(x,t)dt + g(t)dw

Figure from https://theaisummer.com/static/d007d60f773b61f4585cbec3869490d5/a878e/score-sde.png
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Diffusion models

Forward SDE (data — noise)

x(0) dx = f(x,t)dt + g(t)dw

Figure from https://theaisummer.com/static/d007d60f773b61f4585cbec3869490d5/a878e/score-sde.png
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Diffusion models

Forward SDE (data — noise)

x(0) dx = f(x,t)dt + g(t)dw

gcore funciio
dx = [£(x,) — & ()7 logp,(x)] di + g(t)dw

Reverse SDE (noise — data)

Figure from https://theaisummer.com/static/d007d60f773b61f4585cbec3869490d5/a878e/score-sde.png
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Diffusion models

Forward SDE (data — noise)
x(0) dx = f(x,t)dt + g(t)dw

score function

= [f(x,1) & log p ( )]] dt + g(t)dw

Reverse SDE (noise — data)

diffusion models learn time stepping for reverse SDE

Figure from https://theaisummer.com/static/d007d60f773b61f4585cbec3869490d5/a878e/score-sde.png
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Training Diffusion models

1. Forward process up to step i: generate noised sample

« Can be computed in closed form since standard Gaussian
noise
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Training Diffusion models

1. Forward process up to step i: generate noised sample

« Can be computed in closed form since standard Gaussian
noise

2. Predict x_{i-1} from x_i
« Equivalent to learning change in noise level
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Training Diffusion models

1. Forward process up to step i: generate noised sample

« Can be computed in closed form since standard Gaussian
noise

2. Predict x_{i-1} from x_i

« Equivalent to learning change in noise level

Inference: use conventional time stepping scheme to go from pure
noise to noise-free sample p(y,x)

« Standard time stepping schemes (Euler, Runge-Kutta)
 10s — 100s of steps needed => expensive
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Training Diffusion models

« Which neural network should one use?
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Training Diffusion models

« Which neural network should one use?

Any sensible neural network will work
U-Net is the historical defaul

Transformers are quickly becoming standard (e.g.

OpenAl’s Sora, Stable Diffusion 3)
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Summary

« Generative models learn probability distribution

p(y7 :13) ~ pe(ya aj)

* Neural network is numerical model for prob. distribution

 No assumption about the form of the distribution or
relationship x, y

« Natural fit for problems where ambiguity or uncertainty or
stochasticity plays a role

*  We typically do not have strong conventional models
in these cases or cannot solve them efficiently
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