Tree models

or - How to make the most of your tabular data

Mihai Alexe
ECMWEF Bonn

first.lastname@ecmwf.int

_c ECMWF © ECMWF March 19, 2024

< ECMWF

Kaggle — Al report, 2023

| Tabular / Time Series Data

Section Overview by Bojan Tunquz

Topic Summary

Tabular data, in the form of transactional data and
records of exchange and trade, has existed since the
dawn of writing. It may even precede written language.
In most organizations, it is the most commonly used
form of data. There is no definitive measure, but it is
estimated that between 50% and 90% of practicing data
scientists use tabular data as their primary type of data
in their professional setting.

Time series data is, in many respects, similar to tabular
data. It is often used to encode the same kinds of
transactions as non-temporal tabular data, with one
important distinction: inclusion of temporal information.

kaggle AlReport 2023 37

The temporal nature of those data points becomes a
major underlying feature of time-series datasets,
requiring special considerations in analysis and
modeling.

Tabular data, and to much lesser extent time-series
data, has proven largely impervious to the deep learning
revolution. Non-neural-network-based ML techniques
and tools are still widely used and have stood the test of
time. Nonetheless, there have been some interesting
recent developments on that front as well. This remains
a kind of data where a wide variety of tools and
techniques are relevant, and there exists tremendous
potential for further research and improvement.

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS
https://storage.googleapis.com/kaggle-media/reports/2023 Kaggle Al Report.pdf

2

https://storage.googleapis.com/kaggle-media/reports/2023_Kaggle_AI_Report.pdf

What is tabular data?

* Data that can be well presented in a table!

* Rows are examples to train on.

e Columns are different variables to be used in
prediction or to be predicted.

* When is earth-system data tabular?

— When the temporal and spatial components of the
problem are not important.

— e.g. correcting the weather forecast for your
house.

* On tabular, the methods we will explore today
are very strong.

) o)
-y ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Examples

Predictors/predictands

Time

D A WON - O

B

Temperature

NN O A W -

c

Surface pressure
1060
1059
1058
1058
1059
1060
1060

Decision trees

 an
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

/1 | y /‘I'.' / .
— DECISION TREE

OCTITs
00 0°

g
SO MADE THIS ELAB’Q@ATE
DAECISION I RELE=>5

 an
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

CH4 measurements at Mauna Loa [ppb]

—— CH4
1900 A

1850 A

1800 A

1750 A

1700 A

date <= 1991.7
squared_error = 2100.7 1650 1
samples = 350
value = 1745.4
True Fa|se 19I85 19'90 19'95 20I00 20I05 20'10 20.15 20l20
decimal
date <= 1987.7
squared_error = 748.2
samples = 98
value = 1681.6
date <= 1985.7 date <= 1989.7 date <= 1994.8
squared_error = 240.4 squared_error = 139.4 squared_error = 98.6
samples = 50 samples = 48 samples = 84
value = 1658.5 value = 1705.7 value = 1745.9

squared_error =71.8 squared_error = 44.1 squared_error = 37.8 squared_error = 30.3 squared_error = 21.2 squared_error = 37.2
samples = 26 samples = 24 samples = 24 samples = 24 samples = 37 samples = 47
value = 1645.5 value = 1672.5 value = 1695.4 value = 1716.0 value = 1736.6 value = 1753.3

l o)
-y ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 6

How do you pick the right decisions?

* Search over a set of possible splits in the data (e.g. dates in the previous slide).
— For each split, calculate an impurity/loss.

— Choose the split that minimises the loss value.

* For classification, calculate probability of being a class for the samples in the branch.
— Gini impurity
— Log loss/entropy
H(Qm) = — mek log(pmk)
 For regression: k

— Mean-squared error

« of each value in the tree against the branch-average value.
— Mean absolute error

— Half Poisson deviance el

) o)
-y ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Decision tree

No need to normalise data.
Easy to interpret

Can handle numerical and categorical data

High variance

target

Easy to overfit (needs regularization)
Scales poorly with large data or decision spaces.
Not differentiable (can’t optimize jointly with something else)

Produce piecewise constant approximations, so can't
extrapolate (can be strength or weakness).

Can be biased if your (categorical) data are imbalanced

< ECMWF

Decision Tree Regression

R o data
- —— max_depth=2
max depth=5
1.0 QoW o e - p
- . . —
7‘ > ‘
0.5 - & =
< R A
V, e
0.0 1
° - -~
-0.5 1 R) —";1,
o
‘ — . —
_1_0 . o "w 33
c
-1.5 -
o)
0 2 3 4 5
data

class sklearn.tree.DecisionTreeClassifier(
*,
split quality measure: Gini or entropy
criterion='gini’',
how to split at each node: "best" or "random"
splitter="best’,
maximum tree depth
max_depth=None,
minimum samples required to split a node
min_samples_split=2,
minimum samples per leaf
min_samples_leaf=1,
max no of features to consider when doing a split
max_features=10,
max no of leaf nodes
max_leaf_nodes=None,
minimum decrease in impurity when accepting a split
min_impurity_decrease=0.0,

class weights — useful for classifying imbalanced data

class_weight=None,
tree pruning parameter
ccp_alpha=0.0

)

l o)
-y ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

= regularization

Random forests

<> ECMWF

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

10

Random forests

* Decision trees are very sensitive to small variations in training data.

* How to fix this? Build many trees.

— On subsets of the inputs
and subsets of examples.

* When predicting:

— Average the solution of each
tree to get answer.

< ECMWF

-

al ha el | ol

1
Training dataset a2 b2 a2 da 2
a3 b3 3 d3 1

a4 b4 ¢4 d4 1

2

(X | X% | X | v I X | X | X | ¥
Y 0ELE RuY L bl 'l dyl 1
Bootstrap
< il - SN ¥ Bl | 53 3 a3 1
S ¢ d 2 b4 ¢4 d4 1
| |
Q O
Ensemble)y O o
of trees Q R Q\
T
6 0~ O olo o
\ ’,/_ -
Aggregation Majority decision

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

a2 b2 2
a3 b3 1 Bootstrapping +
as b5 2 aggregation ==
1 bagging
o O
S 9
o3

Figure from Wikipedia

11

How to train your tree model?

< ECMWF

ToBpgerkr-

"My job is to make decisions.
Your job is to make them good decisions.”

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

12

Building a Random Forest

from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16)
clf.fit(X_train, y_train)

predictions = clf.predict(X_test)

We're trading bias for variance (a common paradigm in machine learning!)

n_estimators == number of trees

Many of the same choices as a decision tree.

* How can we optimise these parameters?

) o)
-y ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

13

Hyperparameter optimization: randomized search with CV

sklearn.model selection.RandomizedSearchCV

* Random search over a grid of hyperparameters.

* Cross-validation is used to create subsets of the training
data for training and evaluation.

* A separate test set should be generated first.

* GridSearchCV could be used to completely
explore the space.

l an
-y ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Number of trees in random forest

n_estimators = [100, 200, 300, 400, 500]

Number of features to consider at every split
max_features = ['auto', 'sqrt'l]

Maximum number of levels in tree

max_depth = [4, 6, 8, 10, ..., None]

Minimum number of samples required to split a node
min_samples_split = [2, 5, 10, ...]

Minimum number of samples required at each leaf node
min_samples_leaf = [1, 2, 4, ...]

Method of selecting samples for training each tree
bootstrap = [True, False]

Create the parameter "grid"

grid = {'n_estimators': n_estimators, ... etc ...}

base_model = RandomForestRegressor()

optimized_model = RandomizedSearchCV(
estimator=base_model, param_distributions=grid,
number of search iterations
n_iter=100,
cross—-validation folds
cv=5,
random seed
random_state=42

14

Gradient boosted trees

 an
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

15

Residuals and tree predictions

0.8
I : Training set
Gradient boosted trees Rl
* Sequentially add trees to an ensemble. .
— Each correcting its predecessor. .,1"'
= a—at
— The next tree fits the residual of . Nl s ¥
the prior one. : — 90 B :
-0.4 -0.2 0.0 0.2 0.4
* Random subsgts of the training data.are . S T—
drawn for training each tree to regularise. o ha(x1)
. 0.24 Py &
g "+ ++ f ¥ s T4
< 00 "t, e A + +
| A = :+ ; Y
e Need care not to overfit. > 02 TR 4
* Important to have validation and test datasets.
o . . -04 02 0.0 0.2 0.4
— Stop training when validation scores no longer
improve. . — hsba)
<
< 0.2
< L+ I+ 1::1 " hy
,L :"' i, 4+ + +ite b
g 0.0 1 :¢++‘1’+ I & ++ ++ i +f£+ % ++
'lc -0.2 1 ‘ + 4
From Geron 2019, chapter 7 >
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow ~ ~041
-04 -0 0.0 0.2 0.4
X1

< ECMWF

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

0.8 X

—— h(x1) = hi(x1) a°
.'o
. e
o 34 o‘ 1
h "
’ P
0.0 - eie Y 4
LI
-0.4 -0.2 0.0 0.2 0.4
’.
o o
. . e
3 o P
0.0 ce o g e
. 35
—0.4 -0.2 0.0 0.2 0.4
0.8 T
—— h(x1) = h1(x1) + h2(x1) + h3(x1)
061 .4° s
e
y Ll
0.4 -
0.2 1 b4 o
c',. S
e o . °
0.0 i A
; i
-0.4 -0.2 0.0 0.2 0.4
X1
16

Ensemble predictions

« Training set

An extremely powerful techniquel!

Gradient boosted trees Just look at the Kaggle challenges ©
How to avoid overfitting: Vildation aivor
0.010

- Early stopping (OOB performance)
- Tree regularization, e.g. max-depth, leaf 0.008 -

count, ...
- Adjust learning rate (control the . 0.006 -

contribution of each tree to the ensemble) — g

LR shrinkage W 0.004 - .
- Stochastic boosting: randomly subsample dokiibhlizols

the fraction of training instances to be used 0.002 !

when training each tree (again, we're :

trading bias against variance) 0.000 . , B : :

0 20 40 60 80 100 120

Number of trees

T amic -
»- LightGBM XGBoost . et ¢ CatBoost

< ECMWF 7

Figure from chapter 7 of (Geron, 2019)

https://github.com/dmlc/xgboost/tree/master/demo
https://learning.oreilly.com/library/view/hands-on-machine-learning/9781492032632/ch07.html

XGB + dmlc
00 XGBoost

(X, y) = our data
X_train, X_test, y_train, y_test = train_test_split(X, vy)
clf = xgb.XGBClassifier(

number of boosting rounds

n_estimators=10,

maximum depth for base learner tress

max_depth=5,

max no leaves

max_leaves=100,

binary classification

objective='binary:logistic’,

number of threads

n_jobs=1,

lots of other options, see

https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassified

clf.fit(
X_train, y_train,
early stopping (avoids overfit)
early_stopping_rounds=10,
evaluation metric: AUC
eval_metric="auc",
00S data
eval_set=[(X_test, y_test)]

< ECMWF 1s

https://qithub.com/dmlc/xgboost https://xgboost.readthedocs.io/en/stable/tutorials/model.html

https://xgboost.readthedocs.io/en/stable/tutorials/model.html
https://github.com/dmlc/xgboost

https://arxiv.org/abs/2207.08815

Why do tree-based models still outperform deep
learning on typical tabular data?

Léo Grinsztajn Edouard Oyallon Gaél Varoquaux
Soda, Inria Saclay MLIA, Sorbonne University Soda, Inria Saclay

leo.grinsztajn@inria. fr
Best methods on tabular data: ensembles of decision trees (bagging or boosting)
Why?
Inductive biases of trees appear better suited to tabular data

- NNs biased to overly smooth solutions

- NNs less robust to uninformative features
- Tree models are not rotationally invariant (unlike MLPs), as they attend to each feature separately

l an
-y ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 19

https://arxiv.org/abs/2207.08815

Summary

* Tree algos don't (usually) make the headlines.

— But on tabular data they should always be tested, most often beat neural networks.

* Interfaces are easy to use.
— Scikit-learn has a standard interface for Regression/Decision tree/Random forest.

— XGBoost, CatBoost, LightGBM: GPU support
* Robust models can be built on small datasets.

* Decision trees/random forest/gradient-boosted trees are all very capable of overfitting.
— Vital to have good data hygiene.

— Truly independent training/validation/test sets.

l an
-y ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

20

Extra slides

<> ECMWF

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

21

Gradient boosting: pseudocode

Input: training set {(x;,¥;)}, , a differentiable loss function L(y, F'(z)), number of iterations M.
Algorithm:

1. Initialize model with a constant value:

Fy(z) = argmin Y | L(y;, 7).
7 i=1

The "gradients” in gradient boosting

2.Form=1toM:

1. Compute so-called pseudo-residuals:
. [BL(yi,F(wi))]
OF(zi) | p@)=Fns(@)

2. Fit a base learner (or weak learner, e.g. tree) closed under scaling h,, (:B) to pseudo-residuals, i.e. train it using the training set {(:cz : rim)}?zl.

foF £ = Loy

3. Compute multiplier 7y,,, by solving the following one-dimensional optimization problem:

n
By &= a.rgminz L3 v P=1(63) YR (23))
v i=1
4. Update the model:
Foilz) = Foi (@) +Fhini(e):

3. Output Fys (z).

< ECMWF 2

https://arxiv.org/abs/2207.08815

a2l mGradientBoostingTree P
gg 8 L‘Rk“(_'jfﬁﬁ_ﬂ_ebt 8 - 8 . \(3r'_:-_‘uil:—l"lt?u:i:::::E:’{i!";::T."EE
© .9 s 1 ANSTONMEN o228 e
g:‘: ® 0.75 5@ ® RandomFore st ———
58 2088
g 2 .:' o3 : Rl _Transformer
o - §'§ e
mc 8 0.50 » T g
cLe £ L et -
285 g=goe
NP L E 2 Resnet
g E ©025 g8 c
58S a. Removing features 5 EQ %5 b. Adding features
=2 O =
0% 25% 50% 75% 0% 25% 50% 75% 100%
~ Percentage of features removed Percentage of uninformative
(in decreasing order of RF importance) features added

Figure 4: Test accuracy changes when removing (a) or adding (b) uninformative features.
Features are removed in increasing order of feature importance (computed with a Random Forest).
Added features are sampled from standard Gaussians uncorrelated with the target and with other
features. Scores are averaged across datasets, and the ribbons correspond to the minimum and
maximum score among the 30 different random search reorders (starting with the default models).

e
- EGMWENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

https://arxiv.org/abs/2207.08815

https://arxiv.org/abs/2207.08815

Both numerical and categorical features
Classification (7 datasets)

Regression (17 datasets)

o
©

o
@

Normalized test accuracy of best

model (on valid set) up to this iteration
2
Normalized test R2 score of best

model (on valid set) up to this iteration

0.6 06 /
/FT Trans f yrme :
05 05 ""P@lpt"“”"""'
1 10 100 10 100
Number of random search iterations Number of random search iterations

Figure 1: Benchmark on medium-sized datasets, top only numerical features; bottom: all features.
Dotted lines correspond to the score of the default hyperparameters, which is also the first random
search iteration. Each value corresponds to the test score of the best model (on the validation set)
after a specific number of random search iterations, averaged on 135 shuffles of the random search
order. The ribbon corresponds to minimum and maximum scores on these 15 shuffles.

e
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 24

https://arxiv.org/abs/2207.08815

https://arxiv.org/abs/2207.08815

ot U3
O wN . .

% = 809 Figure 2: Normalized test accuracy of
€33 * , different models for varying smoothing
© GradientBoostingTree & . .

» gg Bandi N p iy of the target function on the train set.
3 T3 * T B We smooth the target function through a
56508 dr T M Gaussian Kernel smoother, whose covari-
o= ® ransformer e : :
S35 ance matrix is the data covariance, multi-
35 o * plied I?y the (squared) lengthscale of the
BE g *Resnet + Gaussian kernel smoother. A lengthscale
L2207 * = —~ of 0 corresponds to no smoothing (the orig-
R . inal data). All features have been Gaussi-
2B S ‘ + enized before the smoothing through Scik-
g L= o * itLearn’s QuantileTransformer. The box-
S S &0 plots represent the distribution of normal-
< == 0 0.05 0.1 0.25 ized accuracies across 15 re-orderings of

(Squared) lengthscale of the the random search.

Gaussian kernel smoother

l o)
-y ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 25

https://arxiv.org/abs/2207.08815

